Kovyrshin Arseny, Skogh Mårten, Tornberg Lars, Broo Anders, Mensa Stefano, Sahin Emre, Symons Benjamin C B, Crain Jason, Tavernelli Ivano
Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, Pepparedsleden 1, Molndal SE-431 83, Sweden.
Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
J Phys Chem Lett. 2023 Aug 10;14(31):7065-7072. doi: 10.1021/acs.jpclett.3c01589. Epub 2023 Aug 1.
Coupled quantum electron-nuclear dynamics is often associated with the Born-Huang expansion of the molecular wave function and the appearance of nonadiabatic effects as a perturbation. On the other hand, native multicomponent representations of electrons and nuclei also exist, which do not rely on any a priori approximation. However, their implementation is hampered by prohibitive scaling. Consequently, quantum computers offer a unique opportunity for extending their use to larger systems. Here, we propose a quantum algorithm for simulating the time-evolution of molecular systems and apply it to proton transfer dynamics in malonaldehyde, described as a rigid scaffold. The proposed quantum algorithm can be easily generalized to include the explicit dynamics of the classically described molecular scaffold. We show how entanglement between electronic and nuclear degrees of freedom can persist over long times if electrons do not follow the nuclear displacement adiabatically. The proposed quantum algorithm may become a valid candidate for the study of such phenomena when sufficiently powerful quantum computers become available.
耦合量子电子-核动力学通常与分子波函数的玻恩-黄展开以及非绝热效应作为微扰的出现相关联。另一方面,电子和原子核的原生多分量表示也存在,它们不依赖于任何先验近似。然而,其实现受到高计算量的阻碍。因此,量子计算机为将其应用扩展到更大系统提供了独特的机会。在这里,我们提出一种用于模拟分子系统时间演化的量子算法,并将其应用于丙二醛中的质子转移动力学,将其描述为一个刚性框架。所提出的量子算法可以很容易地推广到包括经典描述的分子框架的显式动力学。我们展示了如果电子不绝热地跟随核位移,电子和核自由度之间的纠缠如何能够长时间持续。当有足够强大的量子计算机可用时,所提出的量子算法可能成为研究此类现象的有效候选方法。