Research Programme on Biomedical Informatics (GRIB), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Hospital del Mar Research Institute, Barcelona, Spain.
Department of Pharmacy and Pharmaceutical Technology and Parasitology, Universitat de València, Valencia, Spain.
Arch Toxicol. 2023 Oct;97(10):2721-2740. doi: 10.1007/s00204-023-03557-6. Epub 2023 Aug 1.
In silico methods can be used for an early assessment of arrhythmogenic properties of drug candidates. However, their use for decision-making is conditioned by the possibility to estimate the predictions' uncertainty. This work describes our efforts to develop uncertainty quantification methods for the predictions produced by multi-level proarrhythmia models. In silico models used in this field usually start with experimental or predicted IC values that describe drug-induced ion channel blockade. Using such inputs, an electrophysiological model computes how the ion channel inhibition, exerted by a drug in a certain concentration, translates to an altered shape and duration of the action potential in cardiac cells, which can be represented as arrhythmogenic risk biomarkers such as the APD. Using this framework, we identify the main sources of aleatory and epistemic uncertainties and propose a method based on probabilistic simulations that replaces single-point estimates predicted using multiple input values, including the ICs and the electrophysiological parameters, by distributions of values. Two selected variability types associated with these inputs are then propagated through the multi-level model to estimate their impact on the uncertainty levels in the output, expressed by means of intervals. The proposed approach yields single predictions of arrhythmogenic risk biomarkers together with value intervals, providing a more comprehensive and realistic description of drug effects on a human population. The methodology was tested by predicting arrhythmogenic biomarkers on a series of twelve well-characterised marketed drugs, belonging to different arrhythmogenic risk classes.
基于计算机的方法可用于早期评估候选药物的致心律失常特性。然而,其决策用途受到预测不确定性估计可能性的限制。这项工作描述了我们为多水平致心律失常模型产生的预测开发不确定性量化方法的努力。该领域中使用的基于计算机的模型通常从描述药物诱导离子通道阻断的实验或预测的 IC 值开始。使用此类输入,电生理学模型计算药物在特定浓度下的离子通道抑制作用如何转化为心脏细胞中动作电位的形状和持续时间的改变,这可以表示为心律失常风险生物标志物,如 APD。在这个框架下,我们确定了随机和认知不确定性的主要来源,并提出了一种基于概率模拟的方法,该方法用值分布替代使用多个输入值(包括 IC 和电生理参数)预测的单点估计。然后,将与这些输入相关的两种选定的变异性类型传播通过多级模型,以估计它们对输出不确定性水平的影响,用区间表示。所提出的方法可对心律失常风险生物标志物进行单一预测,并提供区间值,从而更全面和真实地描述药物对人群的影响。该方法通过对属于不同心律失常风险类别的十二种经过充分表征的市售药物的心律失常生物标志物进行预测进行了测试。