Steitz Bryan D, McCoy Allison B, Reese Thomas J, Liu Siru, Weavind Liza, Shipley Kipp, Russo Elise, Wright Adam
Department of Biomedical Informatics, Vanderbilt University Medical Center, 2525 West End Ave., Suite 1475, Nashville, TN, 37203, USA.
Department of Anesthesiology, Vanderbilt University Medical Center, 2525 West End Ave., Suite 1475, Nashville, TN, 37203, USA.
J Gen Intern Med. 2024 Jan;39(1):27-35. doi: 10.1007/s11606-023-08349-3. Epub 2023 Aug 1.
Early detection of clinical deterioration among hospitalized patients is a clinical priority for patient safety and quality of care. Current automated approaches for identifying these patients perform poorly at identifying imminent events.
Develop a machine learning algorithm using pager messages sent between clinical team members to predict imminent clinical deterioration.
We conducted a large observational study using long short-term memory machine learning models on the content and frequency of clinical pages.
We included all hospitalizations between January 1, 2018 and December 31, 2020 at Vanderbilt University Medical Center that included at least one page message to physicians. Exclusion criteria included patients receiving palliative care, hospitalizations with a planned intensive care stay, and hospitalizations in the top 2% longest length of stay.
Model classification performance to identify in-hospital cardiac arrest, transfer to intensive care, or Rapid Response activation in the next 3-, 6-, and 12-hours. We compared model performance against three common early warning scores: Modified Early Warning Score, National Early Warning Score, and the Epic Deterioration Index.
There were 87,783 patients (mean [SD] age 54.0 [18.8] years; 45,835 [52.2%] women) who experienced 136,778 hospitalizations. 6214 hospitalized patients experienced a deterioration event. The machine learning model accurately identified 62% of deterioration events within 3-hours prior to the event and 47% of events within 12-hours. Across each time horizon, the model surpassed performance of the best early warning score including area under the receiver operating characteristic curve at 6-hours (0.856 vs. 0.781), sensitivity at 6-hours (0.590 vs. 0.505), specificity at 6-hours (0.900 vs. 0.878), and F-score at 6-hours (0.291 vs. 0.220).
Machine learning applied to the content and frequency of clinical pages improves prediction of imminent deterioration. Using clinical pages to monitor patient acuity supports improved detection of imminent deterioration without requiring changes to clinical workflow or nursing documentation.
对住院患者的临床病情恶化进行早期检测是保障患者安全和医疗质量的临床重点。当前用于识别这些患者的自动化方法在识别即将发生的事件方面表现不佳。
利用临床团队成员之间发送的传呼信息开发一种机器学习算法,以预测即将发生的临床病情恶化。
我们对临床传呼的内容和频率进行了一项大型观察性研究,使用长短期记忆机器学习模型。
我们纳入了2018年1月1日至2020年12月31日在范德比尔特大学医学中心的所有住院病例,这些病例至少包含一条发给医生的传呼信息。排除标准包括接受姑息治疗的患者、计划入住重症监护病房的住院病例以及住院时间最长的前2%的病例。
模型在接下来3小时、6小时和12小时内识别院内心脏骤停、转入重症监护病房或启动快速反应的分类性能。我们将模型性能与三个常见的早期预警评分进行了比较:改良早期预警评分、国家早期预警评分和Epic病情恶化指数。
共有87783名患者(平均[标准差]年龄54.0[18.8]岁;45835名[52.2%]为女性)经历了136778次住院。6214名住院患者发生了病情恶化事件。机器学习模型在事件发生前3小时内准确识别了62%的病情恶化事件,在12小时内识别了47%的事件。在每个时间范围内,该模型的表现均超过了最佳早期预警评分,包括6小时时的受试者工作特征曲线下面积(0.856对0.781)、6小时时的敏感性(0.590对0.505)、6小时时的特异性(0.900对0.878)以及6小时时的F值(0.291对0.220)。
将机器学习应用于临床传呼的内容和频率可改善对即将发生的病情恶化的预测。利用临床传呼来监测患者病情严重程度有助于更好地检测即将发生的病情恶化,而无需改变临床工作流程或护理记录。