Suppr超能文献

恶化风险指数:开发并试行一种用于降低儿科住院患者病情恶化的机器学习算法。

The Deterioration Risk Index: Developing and Piloting a Machine Learning Algorithm to Reduce Pediatric Inpatient Deterioration.

作者信息

Rust Laura O H, Gorham Tyler J, Bambach Sven, Bode Ryan S, Maa Tensing, Hoffman Jeffrey M, Rust Steven W

机构信息

Division of Clinical Informatics, Department of Pediatrics, The Ohio State University College of Medicine, Nationwide Children's Hospital, Columbus, OH.

Division of Emergency Medicine, Department of Pediatrics, The Ohio State University College of Medicine, Nationwide Children's Hospital, Columbus, OH.

出版信息

Pediatr Crit Care Med. 2023 Apr 1;24(4):322-333. doi: 10.1097/PCC.0000000000003186. Epub 2023 Feb 2.

Abstract

OBJECTIVES

Develop and deploy a disease cohort-based machine learning algorithm for timely identification of hospitalized pediatric patients at risk for clinical deterioration that outperforms our existing situational awareness program.

DESIGN

Retrospective cohort study.

SETTING

Nationwide Children's Hospital, a freestanding, quaternary-care, academic children's hospital in Columbus, OH.

PATIENTS

All patients admitted to inpatient units participating in the preexisting situational awareness program from October 20, 2015, to December 31, 2019, excluding patients over 18 years old at admission and those with a neonatal ICU stay during their hospitalization.

INTERVENTIONS

We developed separate algorithms for cardiac, malignancy, and general cohorts via lasso-regularized logistic regression. Candidate model predictors included vital signs, supplemental oxygen, nursing assessments, early warning scores, diagnoses, lab results, and situational awareness criteria. Model performance was characterized in clinical terms and compared with our previous situational awareness program based on a novel retrospective validation approach. Simulations with frontline staff, prior to clinical implementation, informed user experience and refined interdisciplinary workflows. Model implementation was piloted on cardiology and hospital medicine units in early 2021.

MEASUREMENTS AND MAIN RESULTS

The Deterioration Risk Index (DRI) was 2.4 times as sensitive as our existing situational awareness program (sensitivities of 53% and 22%, respectively; p < 0.001) and required 2.3 times fewer alarms per detected event (121 DRI alarms per detected event vs 276 for existing program). Notable improvements were a four-fold sensitivity gain for the cardiac diagnostic cohort (73% vs 18%; p < 0.001) and a three-fold gain (81% vs 27%; p < 0.001) for the malignancy diagnostic cohort. Postimplementation pilot results over 18 months revealed a 77% reduction in deterioration events (three events observed vs 13.1 expected, p = 0.001).

CONCLUSIONS

The etiology of pediatric inpatient deterioration requires acknowledgement of the unique pathophysiology among cardiology and oncology patients. Selection and weighting of diverse candidate risk factors via machine learning can produce a more sensitive early warning system for clinical deterioration. Leveraging preexisting situational awareness platforms and accounting for operational impacts of model implementation are key aspects to successful bedside translation.

摘要

目标

开发并部署一种基于疾病队列的机器学习算法,以便及时识别有临床病情恶化风险的住院儿科患者,该算法要优于我们现有的态势感知程序。

设计

回顾性队列研究。

设置

全国儿童医院,一家位于俄亥俄州哥伦布市的独立的四级医疗学术儿童医院。

患者

2015年10月20日至2019年12月31日期间入住参与现有态势感知程序的住院科室的所有患者,不包括入院时年龄超过18岁的患者以及住院期间入住新生儿重症监护病房的患者。

干预措施

我们通过套索正则化逻辑回归为心脏疾病、恶性肿瘤和普通队列分别开发了算法。候选模型预测因素包括生命体征、补充氧气、护理评估、早期预警评分、诊断、实验室检查结果和态势感知标准。模型性能从临床角度进行了表征,并基于一种新颖的回顾性验证方法与我们之前的态势感知程序进行了比较。在临床实施之前,与一线工作人员进行的模拟为用户体验提供了参考,并完善了跨学科工作流程。2021年初在心脏病学和医院医学科室进行了模型实施试点。

测量指标和主要结果

病情恶化风险指数(DRI)的敏感性是我们现有态势感知程序的2.4倍(敏感性分别为53%和22%;p<0.001),并且每次检测到的事件所需的警报次数减少了2.3倍(每次检测到的事件有121次DRI警报,而现有程序为276次)。值得注意的是,心脏疾病诊断队列的敏感性提高了四倍(73%对18%;p<0.001),恶性肿瘤诊断队列的敏感性提高了三倍(81%对27%;p<0.001)。实施后18个月的试点结果显示,病情恶化事件减少了77%(观察到3起事件,预期为13.1起,p = 0.001)。

结论

儿科住院患者病情恶化的病因需要考虑到心脏病学和肿瘤学患者独特的病理生理学。通过机器学习选择和权衡各种候选风险因素可以产生一个更敏感的临床病情恶化早期预警系统。利用现有的态势感知平台并考虑模型实施的操作影响是成功实现床边应用的关键方面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验