Department of Biomedical Informatics, University of California San Diego, San Diego, CA.
School of Medicine, University of Limerick, Limerick, Ireland.
Crit Care Explor. 2024 Sep 11;6(9):e1151. doi: 10.1097/CCE.0000000000001151. eCollection 2024 Sep 1.
Prediction-based strategies for physiologic deterioration offer the potential for earlier clinical interventions that improve patient outcomes. Current strategies are limited because they operate on inconsistent definitions of deterioration, attempt to dichotomize a dynamic and progressive phenomenon, and offer poor performance.
Can a deep learning deterioration prediction model (Deep Learning Enhanced Triage and Emergency Response for Inpatient Optimization [DETERIO]) based on a consensus definition of deterioration (the Adult Inpatient Decompensation Event [AIDE] criteria) and that approaches deterioration as a state "value-estimation" problem outperform a commercially available deterioration score?
The derivation cohort contained retrospective patient data collected from both inpatient services (inpatient) and emergency departments (EDs) of two hospitals within the University of California San Diego Health System. There were 330,729 total patients; 71,735 were inpatient and 258,994 were ED. Of these data, 20% were randomly sampled as a retrospective "testing set."
The validation cohort contained temporal patient data. There were 65,898 total patients; 13,750 were inpatient and 52,148 were ED.
DETERIO was developed and validated on these data, using the AIDE criteria to generate a composite score. DETERIO's architecture builds upon previous work. DETERIO's prediction performance up to 12 hours before T0 was compared against Epic Deterioration Index (EDI).
In the retrospective testing set, DETERIO's area under the receiver operating characteristic curve (AUC) was 0.797 and 0.874 for inpatient and ED subsets, respectively. In the temporal validation cohort, the corresponding AUC were 0.775 and 0.856, respectively. DETERIO outperformed EDI in the inpatient validation cohort (AUC, 0.775 vs. 0.721; p < 0.01) while maintaining superior sensitivity and a comparable rate of false alarms (sensitivity, 45.50% vs. 30.00%; positive predictive value, 20.50% vs. 16.11%).
DETERIO demonstrates promise in the viability of a state value-estimation approach for predicting adult physiologic deterioration. It may outperform EDI while offering additional clinical utility in triage and clinician interaction with prediction confidence and explanations. Additional studies are needed to assess generalizability and real-world clinical impact.
基于预测的生理恶化策略为改善患者预后提供了更早进行临床干预的可能性。目前的策略存在局限性,因为它们基于不一致的恶化定义,试图将一个动态和渐进的现象进行二分法处理,并提供较差的性能。
一种基于共识定义的恶化(成人住院患者失代偿事件[AIDE]标准)的深度学习恶化预测模型(深度学习增强分诊和住院患者优化反应[DETERIO])是否能优于商业上可用的恶化评分?该模型采用一种状态“值估计”问题的方法来处理恶化问题。
推导队列包含从加利福尼亚大学圣地亚哥卫生系统的两家医院的住院服务(住院)和急诊部(ED)收集的回顾性患者数据。总共有 330729 名患者;71735 名住院患者和 258994 名 ED 患者。这些数据中,20%被随机抽取作为回顾性“测试集”。
验证队列包含时间性的患者数据。总共有 65898 名患者;13750 名住院患者和 52148 名 ED 患者。
DETERIO 是在这些数据上开发和验证的,使用 AIDE 标准生成一个综合评分。DETERIO 的架构基于先前的工作。在 T0 前 12 小时内,将 DETERIO 的接受者操作特征曲线(ROC)下面积(AUC)与 Epic Deterioration Index(EDI)进行了比较。
在回顾性测试集中,DETERIO 的 AUC 分别为住院和 ED 子集的 0.797 和 0.874。在时间验证队列中,相应的 AUC 分别为 0.775 和 0.856。DETERIO 在住院验证队列中的表现优于 EDI(AUC,0.775 比 0.721;p < 0.01),同时保持了较高的敏感性和可比的假阳性率(敏感性,45.50%比 30.00%;阳性预测值,20.50%比 16.11%)。
DETERIO 为预测成人生理恶化的状态值估计方法的可行性提供了希望。它可能优于 EDI,同时在分诊和临床医生与预测置信度和解释的交互方面提供额外的临床效用。需要进一步的研究来评估其普遍性和实际临床影响。