Department of Anesthesiology.
Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education.
Int J Surg. 2023 Sep 1;109(9):2561-2573. doi: 10.1097/JS9.0000000000000434.
Early recognition of the risk of acute respiratory distress syndrome (ARDS) after cardiopulmonary bypass (CPB) may improve clinical outcomes. The main objective of this study was to identify proteomic biomarkers and develop an early prediction model for CPB-ARDS.
The authors conducted three prospective nested cohort studies of all consecutive patients undergoing cardiac surgery with CPB at Union Hospital of Tongji Medical College Hospital. Plasma proteomic profiling was performed in ARDS patients and matched controls (Cohort 1, April 2021-July 2021) at multiple timepoints: before CPB (T1), at the end of CPB (T2), and 24 h after CPB (T3). Then, for Cohort 2 (August 2021-July 2022), biomarker expression was measured and verified in the plasma. Furthermore, lung ischemia/reperfusion injury (LIRI) models and sham-operation were established in 50 rats to explore the tissue-level expression of biomarkers identified in the aforementioned clinical cohort. Subsequently, a machine learning-based prediction model incorporating protein and clinical predictors from Cohort 2 for CPB-ARDS was developed and internally validated. Model performance was externally validated on Cohort 3 (January 2023-March 2023).
A total of 709 proteins were identified, with 9, 29, and 35 altered proteins between ARDS cases and controls at T1, T2, and T3, respectively, in Cohort 1. Following quantitative verification of several predictive proteins in Cohort 2, higher levels of thioredoxin domain containing 5 (TXNDC5), cathepsin L (CTSL), and NPC intracellular cholesterol transporter 2 (NPC2) at T2 were observed in CPB-ARDS patients. A dynamic online predictive nomogram was developed based on three proteins (TXNDC5, CTSL, and NPC2) and two clinical risk factors (CPB time and massive blood transfusion), with excellent performance (precision: 83.33%, sensitivity: 93.33%, specificity: 61.16%, and F1 score: 85.05%). The mean area under the receiver operating characteristics curve (AUC) of the model after 10-fold cross-validation was 0.839 (95% CI: 0.824-0.855). Model discrimination and calibration were maintained during external validation dataset testing, with an AUC of 0.820 (95% CI: 0.685-0.955) and a Brier Score of 0.177 (95% CI: 0.147-0.206). Moreover, the considerably overexpressed TXNDC5 and CTSL proteins identified in the plasma of patients with CPB-ARDS, exhibited a significant upregulation in the lung tissue of LIRI rats.
This study identified several novel predictive biomarkers, developed and validated a practical prediction tool using biomarker and clinical factor combinations for individual prediction of CPB-ARDS risk. Assessing the plasma TXNDC5, CTSL, and NPC2 levels might identify patients who warrant closer follow-up and intensified therapy for ARDS prevention following major surgery.
体外循环 (CPB) 后急性呼吸窘迫综合征 (ARDS) 风险的早期识别可能会改善临床结局。本研究的主要目的是确定蛋白质组学标志物,并为 CPB-ARDS 开发早期预测模型。
作者对华中科技大学同济医学院附属协和医院连续接受 CPB 心脏手术的所有患者进行了三项前瞻性嵌套队列研究。在多个时间点对 ARDS 患者和匹配的对照者(队列 1,2021 年 4 月至 2021 年 7 月)进行血浆蛋白质组分析:CPB 前(T1)、CPB 结束时(T2)和 CPB 后 24 小时(T3)。然后,在队列 2(2021 年 8 月至 2022 年 7 月)中,测量并验证了血浆中生物标志物的表达。此外,在 50 只大鼠中建立了肺缺血/再灌注损伤 (LIRI) 模型和假手术,以探讨在上述临床队列中鉴定的生物标志物的组织水平表达。随后,基于队列 2 中的蛋白质和临床预测因子,开发了一个用于 CPB-ARDS 的基于机器学习的预测模型,并进行了内部验证。模型性能在队列 3(2023 年 1 月至 2023 年 3 月)中进行了外部验证。
队列 1 中,ARDS 病例与对照组在 T1、T2 和 T3 时分别有 9、29 和 35 个蛋白发生改变,共鉴定出 709 种蛋白。在队列 2 中对几种有预测价值的蛋白质进行定量验证后,CPB-ARDS 患者 T2 时的硫氧还蛋白结构域包含 5(TXNDC5)、组织蛋白酶 L(CTSL)和 NPC 细胞内胆固醇转运蛋白 2(NPC2)水平较高。基于三种蛋白(TXNDC5、CTSL 和 NPC2)和两个临床危险因素(CPB 时间和大量输血),开发了一个动态在线预测列线图,具有良好的性能(精确性:83.33%,敏感性:93.33%,特异性:61.16%,F1 评分:85.05%)。经过 10 折交叉验证后,模型的平均接受者操作特征曲线(AUC)为 0.839(95%CI:0.824-0.855)。在外部验证数据集测试中,模型的判别和校准能力得以维持,AUC 为 0.820(95%CI:0.685-0.955),Brier 评分 0.177(95%CI:0.147-0.206)。此外,CPB-ARDS 患者血浆中鉴定出的 TXNDC5 和 CTSL 蛋白表达显著上调。
本研究确定了几个新的预测生物标志物,开发并验证了一种实用的预测工具,该工具使用生物标志物和临床因素组合对 CPB-ARDS 风险进行个体预测。评估血浆 TXNDC5、CTSL 和 NPC2 水平可能有助于识别需要密切随访和强化治疗以预防重大手术后发生 ARDS 的患者。