Suppr超能文献

利用分段泊松模型和自回归整合移动平均模型的新颖组合预测每日新冠死亡人数波动序列

Forecasting waved daily COVID-19 death count series with a novel combination of segmented Poisson model and ARIMA models.

作者信息

Zhang Xiaolei, Ma Renjun

机构信息

Pan-Asia Business School, Yunnan Normal University, Kunming, People's Republic of China.

Department of Mathematics and Statistics, University of New Brunswick, Fredericton, Canada.

出版信息

J Appl Stat. 2021 Oct 12;50(11-12):2561-2574. doi: 10.1080/02664763.2021.1976119. eCollection 2023.

Abstract

Autoregressive Integrated Moving Average (ARIMA) models have been widely used to forecast and model the development of various infectious diseases including COVID-19 outbreaks; however, such use of ARIMA models does not respect the count nature of the pandemic development data. For example, the daily COVID-19 death count series data for Canada and the United States (USA) are generally skewed with lots of low counts. In addition, there are generally waved patterns with turning points influenced by government major interventions against the spread of COVID-19 during different periods and seasons. In this study, we propose a novel combination of the segmented Poisson model and ARIMA models to handle these features and correlation structures in a two-stage process. The first stage of this process is a generalization of trend analysis of time series data. Our approach is illustrated with forecasting and modeling of daily COVID-19 death count series data for Canada and the USA.

摘要

自回归积分移动平均(ARIMA)模型已被广泛用于预测和模拟包括新冠疫情在内的各种传染病的发展;然而,ARIMA模型的这种使用方式没有考虑到大流行发展数据的计数性质。例如,加拿大和美国的每日新冠死亡病例计数序列数据通常存在大量低计数,呈偏态分布。此外,不同时期和季节受政府针对新冠疫情传播的重大干预措施影响,数据通常呈现波动模式并有转折点。在本研究中,我们提出了一种分段泊松模型和ARIMA模型的新颖组合,以在两阶段过程中处理这些特征和相关结构。此过程的第一阶段是时间序列数据趋势分析的推广。我们通过对加拿大和美国的每日新冠死亡病例计数序列数据进行预测和建模来说明我们的方法。

相似文献

引用本文的文献

1
Editorial to the special issue: statistical perspectives on analytics for COVID-19 data.特刊社论:关于COVID-19数据分析的统计学视角
J Appl Stat. 2023 Jul 28;50(11-12):2287-2293. doi: 10.1080/02664763.2023.2228597. eCollection 2023.

本文引用的文献

1
Estimation of COVID-19 prevalence in Italy, Spain, and France.估算意大利、西班牙和法国的 COVID-19 流行率。
Sci Total Environ. 2020 Aug 10;729:138817. doi: 10.1016/j.scitotenv.2020.138817. Epub 2020 Apr 22.
6
Relationship of meteorological factors and human brucellosis in Hebei province, China.河北省气象因素与人间布鲁氏菌病的关系。
Sci Total Environ. 2020 Feb 10;703:135491. doi: 10.1016/j.scitotenv.2019.135491. Epub 2019 Nov 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验