Suppr超能文献

具有时间融合系数的SIR模型及其在美国新冠肺炎疫情中的应用

Time fused coefficient SIR model with application to COVID-19 epidemic in the United States.

作者信息

Yang Hou-Cheng, Xue Yishu, Pan Yuqing, Liu Qingyang, Hu Guanyu

机构信息

Department of Statistics, Florida State University, Tallahassee, FL, USA.

Department of Statistics, University of Connecticut, Storrs, CT, USA.

出版信息

J Appl Stat. 2021 Jun 4;50(11-12):2373-2387. doi: 10.1080/02664763.2021.1936467. eCollection 2023.

Abstract

In this paper, we propose a Susceptible-Infected-Removal (SIR) model with time fused coefficients. In particular, our proposed model discovers the underlying time homogeneity pattern for the SIR model's transmission rate and removal rate via Bayesian shrinkage priors. MCMC sampling for the proposed method is facilitated by the package in R. Extensive simulation studies are carried out to examine the empirical performance of the proposed methods. We further apply the proposed methodology to analyze different levels of COVID-19 data in the United States.

摘要

在本文中,我们提出了一种具有时间融合系数的易感-感染-移除(SIR)模型。具体而言,我们提出的模型通过贝叶斯收缩先验发现SIR模型传播率和移除率潜在的时间齐性模式。R语言中的软件包为所提方法的MCMC抽样提供了便利。我们进行了广泛的模拟研究以检验所提方法的实证性能。我们进一步应用所提方法来分析美国不同层面的新冠肺炎数据。

相似文献

4
RLadyBug-An R package for stochastic epidemic models.RLadyBug——一个用于随机流行病模型的R包。
Comput Stat Data Anal. 2007 Oct 15;52(2):680-686. doi: 10.1016/j.csda.2006.11.016. Epub 2006 Dec 4.
7
Economic recovery forecasts under impacts of COVID-19.新冠疫情影响下的经济复苏预测。
Econ Model. 2022 May;110:105821. doi: 10.1016/j.econmod.2022.105821. Epub 2022 Mar 4.

引用本文的文献

1
Editorial to the special issue: statistical perspectives on analytics for COVID-19 data.特刊社论:关于COVID-19数据分析的统计学视角
J Appl Stat. 2023 Jul 28;50(11-12):2287-2293. doi: 10.1080/02664763.2023.2228597. eCollection 2023.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验