文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

实时预测和预报源自中国武汉的 2019-nCoV 疫情在国内和国际的潜在传播:一项建模研究。

Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study.

机构信息

WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.

WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.

出版信息

Lancet. 2020 Feb 29;395(10225):689-697. doi: 10.1016/S0140-6736(20)30260-9. Epub 2020 Jan 31.


DOI:10.1016/S0140-6736(20)30260-9
PMID:32014114
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7159271/
Abstract

BACKGROUND: Since Dec 31, 2019, the Chinese city of Wuhan has reported an outbreak of atypical pneumonia caused by the 2019 novel coronavirus (2019-nCoV). Cases have been exported to other Chinese cities, as well as internationally, threatening to trigger a global outbreak. Here, we provide an estimate of the size of the epidemic in Wuhan on the basis of the number of cases exported from Wuhan to cities outside mainland China and forecast the extent of the domestic and global public health risks of epidemics, accounting for social and non-pharmaceutical prevention interventions. METHODS: We used data from Dec 31, 2019, to Jan 28, 2020, on the number of cases exported from Wuhan internationally (known days of symptom onset from Dec 25, 2019, to Jan 19, 2020) to infer the number of infections in Wuhan from Dec 1, 2019, to Jan 25, 2020. Cases exported domestically were then estimated. We forecasted the national and global spread of 2019-nCoV, accounting for the effect of the metropolitan-wide quarantine of Wuhan and surrounding cities, which began Jan 23-24, 2020. We used data on monthly flight bookings from the Official Aviation Guide and data on human mobility across more than 300 prefecture-level cities in mainland China from the Tencent database. Data on confirmed cases were obtained from the reports published by the Chinese Center for Disease Control and Prevention. Serial interval estimates were based on previous studies of severe acute respiratory syndrome coronavirus (SARS-CoV). A susceptible-exposed-infectious-recovered metapopulation model was used to simulate the epidemics across all major cities in China. The basic reproductive number was estimated using Markov Chain Monte Carlo methods and presented using the resulting posterior mean and 95% credibile interval (CrI). FINDINGS: In our baseline scenario, we estimated that the basic reproductive number for 2019-nCoV was 2·68 (95% CrI 2·47-2·86) and that 75 815 individuals (95% CrI 37 304-130 330) have been infected in Wuhan as of Jan 25, 2020. The epidemic doubling time was 6·4 days (95% CrI 5·8-7·1). We estimated that in the baseline scenario, Chongqing, Beijing, Shanghai, Guangzhou, and Shenzhen had imported 461 (95% CrI 227-805), 113 (57-193), 98 (49-168), 111 (56-191), and 80 (40-139) infections from Wuhan, respectively. If the transmissibility of 2019-nCoV were similar everywhere domestically and over time, we inferred that epidemics are already growing exponentially in multiple major cities of China with a lag time behind the Wuhan outbreak of about 1-2 weeks. INTERPRETATION: Given that 2019-nCoV is no longer contained within Wuhan, other major Chinese cities are probably sustaining localised outbreaks. Large cities overseas with close transport links to China could also become outbreak epicentres, unless substantial public health interventions at both the population and personal levels are implemented immediately. Independent self-sustaining outbreaks in major cities globally could become inevitable because of substantial exportation of presymptomatic cases and in the absence of large-scale public health interventions. Preparedness plans and mitigation interventions should be readied for quick deployment globally. FUNDING: Health and Medical Research Fund (Hong Kong, China).

摘要

背景:自 2019 年 12 月 31 日以来,中国武汉市报告了一种由 2019 年新型冠状病毒(2019-nCoV)引起的非典型肺炎爆发。病例已输出到中国其他城市以及国际上,有可能引发全球爆发。在这里,我们根据从武汉出口到中国大陆以外城市的病例数,对武汉疫情的规模进行了估计,并预测了疫情对国内和全球公共卫生的风险,包括社会和非药物预防干预措施。

方法:我们使用了 2019 年 12 月 31 日至 2020 年 1 月 28 日期间从武汉出口到国际的病例数(已知的从 2019 年 12 月 25 日至 2020 年 1 月 19 日的症状出现日期)的数据,推断出 2019 年 12 月 1 日至 2020 年 1 月 25 日期间武汉的感染人数。然后估计了国内出口的病例数。我们预测了 2019-nCoV 在全国和全球的传播情况,考虑了从 2020 年 1 月 23-24 日开始的对武汉及其周边城市的大都市范围隔离的影响。我们使用了《官方航空指南》上的每月航班预订数据和中国大陆 300 多个地级市的人员流动数据。从中国疾病预防控制中心发布的报告中获取确诊病例数据。序列间隔估计值基于先前对严重急性呼吸综合征冠状病毒(SARS-CoV)的研究。我们使用了一个易感-暴露-感染-恢复的元种群模型来模拟中国所有主要城市的疫情。使用马尔可夫链蒙特卡罗方法估计基本繁殖数,并使用后验均值和 95%可信区间(CrI)呈现。

结果:在我们的基本情况下,我们估计 2019-nCoV 的基本繁殖数为 2.68(95%CrI 2.47-2.86),截至 2020 年 1 月 25 日,武汉已有 75815 人(95%CrI 37304-130330)感染。疫情倍增时间为 6.4 天(95%CrI 5.8-7.1)。我们估计,如果 2019-nCoV 的传染性在国内各地和随时间推移都是相似的,我们推断,疫情已经在多个中国主要城市呈指数级增长,比武汉疫情的爆发滞后 1-2 周。

解释:鉴于 2019-nCoV 不再局限于武汉,中国其他主要城市可能正在发生局部疫情。与中国有密切交通联系的海外大城市也可能成为疫情中心,除非立即在人口和个人层面上采取大量公共卫生干预措施。由于大量的无症状病例输出,如果没有大规模的公共卫生干预措施,主要城市在全球范围内的独立自维持性爆发可能是不可避免的。应该为全球范围内的快速部署做好准备计划和缓解干预措施。

资助:香港卫生及医疗研究基金(中国香港)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a889/7159271/80565b1e0af4/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a889/7159271/6135d04c3f41/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a889/7159271/583d73849641/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a889/7159271/5a1f6180186d/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a889/7159271/80565b1e0af4/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a889/7159271/6135d04c3f41/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a889/7159271/583d73849641/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a889/7159271/5a1f6180186d/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a889/7159271/80565b1e0af4/gr4_lrg.jpg

相似文献

[1]
Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study.

Lancet. 2020-1-31

[2]
Evolving epidemiology and transmission dynamics of coronavirus disease 2019 outside Hubei province, China: a descriptive and modelling study.

Lancet Infect Dis. 2020-4-2

[3]
Early dynamics of transmission and control of COVID-19: a mathematical modelling study.

Lancet Infect Dis. 2020-3-11

[4]
First-wave COVID-19 transmissibility and severity in China outside Hubei after control measures, and second-wave scenario planning: a modelling impact assessment.

Lancet. 2020-4-8

[5]
Estimated Demand for US Hospital Inpatient and Intensive Care Unit Beds for Patients With COVID-19 Based on Comparisons With Wuhan and Guangzhou, China.

JAMA Netw Open. 2020-5-1

[6]
Optimal timing and effectiveness of COVID-19 outbreak responses in China: a modelling study.

BMC Public Health. 2022-4-7

[7]
Effect of changing case definitions for COVID-19 on the epidemic curve and transmission parameters in mainland China: a modelling study.

Lancet Public Health. 2020-4-21

[8]
The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak.

Science. 2020-3-6

[9]
Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak.

Int J Infect Dis. 2020-1-30

[10]
Early epidemiological assessment of the transmission potential and virulence of coronavirus disease 2019 (COVID-19) in Wuhan City, China, January-February, 2020.

BMC Med. 2020-7-15

引用本文的文献

[1]
The interplay of influenza and COVID-19 in Germany, January 2020 - December 2022: a study of competitive disease dynamics with quarantine measures and partial cross-immunity.

BMC Public Health. 2025-9-9

[2]
Network Pharmacology and Experiment Verification-Based Strategy for Exploring the Mechanisms of Shuqing Granule in the Treatment of COVID-19.

Pharmaceuticals (Basel). 2025-8-18

[3]
International Partnerships in AI-Driven Healthcare: Opportunities and Challenges for Advancing the UN Sustainable Development Goals-A Perspective.

Healthcare (Basel). 2025-8-20

[4]
Predicting infection with COVID-19 disease using logistic regression model in Karak City, Jordan.

F1000Res. 2023-4-3

[5]
Mathematical exploration of a diffusive infection's dynamics and simulation.

Sci Rep. 2025-8-26

[6]
Systematic Comparison of Different Compartmental Models for Predicting COVID-19 Progression.

Epidemiologia (Basel). 2025-7-8

[7]
Distribution and determinants of COVID-19 seroprevalence in a hard-to-access health district in Mali.

PLOS Glob Public Health. 2025-7-21

[8]
Development of two-dimension epidemic prediction model.

Infect Dis Model. 2025-6-27

[9]
Impact of regional digital transformation on public health: an empirical analysis based on 31 provinces in China.

BMC Public Health. 2025-7-17

[10]
Modelling international spread of clade IIb mpox on the Asian continent.

Bull World Health Organ. 2025-7-1

本文引用的文献

[1]
An Outbreak of NCIP (2019-nCoV) Infection in China - Wuhan, Hubei Province, 2019-2020.

China CDC Wkly. 2020-1-31

[2]
Novel coronavirus 2019-nCoV (COVID-19): early estimation of epidemiological parameters and epidemic size estimates.

Philos Trans R Soc Lond B Biol Sci. 2021-7-19

[3]
Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak.

Int J Infect Dis. 2020-1-30

[4]
Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia.

N Engl J Med. 2020-1-29

[5]
Middle East respiratory syndrome coronavirus (MERS-CoV) neutralising antibodies in a high-risk human population, Morocco, November 2017 to January 2018.

Euro Surveill. 2019-11

[6]
Real-time Epidemic Forecasting: Challenges and Opportunities.

Health Secur. 2019

[7]
Human coronavirus alone or in co-infection with rhinovirus C is a risk factor for severe respiratory disease and admission to the pediatric intensive care unit: A one-year study in Southeast Brazil.

PLoS One. 2019-6-3

[8]
Outbreak analytics: a developing data science for informing the response to emerging pathogens.

Philos Trans R Soc Lond B Biol Sci. 2019-7-8

[9]
Comparative Serological Study for the Prevalence of Anti-MERS Coronavirus Antibodies in High- and Low-Risk Groups in Qatar.

J Immunol Res. 2019-2-18

[10]
MERS transmission and risk factors: a systematic review.

BMC Public Health. 2018-5-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索