Sanchez-Uriel Leticia, Bonet-Aleta Javier, Ibarra Alfonso, Hueso Jose L
Instituto de Nanociencia y Materiales de Aragon (INMA) CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I + D, C/ Poeta Mariano Esquillor, S/N, 50018 Zaragoza, Spain.
Networking Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
J Phys Chem C Nanomater Interfaces. 2023 Jul 12;127(29):14146-14154. doi: 10.1021/acs.jpcc.3c00987. eCollection 2023 Jul 27.
Transition-metal nanocatalysis represents a novel alternative currently experiencing flourishing progress to tackle the tumor microenvironment (TME) in cancer therapy. These nanomaterials aim at attacking tumor cells using the intrinsic selectivity of inorganic catalysts. In addition, special attention to tune and control the release of these transition metals is also required. Understanding the chemical reactions behind the catalytic action of the transition-metal nanocatalysts and preventing potential undesired side reactions caused by acute cytotoxicity of the released ionic species represent another important field of research. Specifically, copper-based oxides may suffer from acute leaching that potentially may induce toxicity not only to target cancer cells but also to nearby cells and tissues. In this work, we propose the synthesis of chalcopyrite (CuFeS) nanostructures capable of triggering two key reactions for an effective chemodynamic therapy (CDT) in the heterogeneous phase: (i) glutathione (GSH) oxidation and (ii) oxidation of organic substrates using HO, with negligible leaching of metals under TME-like conditions. This represents an appealing alternative toward the development of safer copper-iron-based nanocatalytic materials with an active catalytic response without incurring leaching side phenomena.
过渡金属纳米催化是目前在癌症治疗中应对肿瘤微环境(TME)方面取得蓬勃发展的一种新型替代方法。这些纳米材料旨在利用无机催化剂的固有选择性来攻击肿瘤细胞。此外,还需要特别关注调节和控制这些过渡金属的释放。了解过渡金属纳米催化剂催化作用背后的化学反应,并防止由释放的离子物种的急性细胞毒性引起的潜在不良副反应,是另一个重要的研究领域。具体而言,铜基氧化物可能会遭受急性浸出,这不仅可能对靶癌细胞,还可能对附近的细胞和组织诱导毒性。在这项工作中,我们提出合成黄铜矿(CuFeS)纳米结构,其能够在异相中引发两个关键反应以实现有效的化学动力学疗法(CDT):(i)谷胱甘肽(GSH)氧化,以及(ii)使用HO氧化有机底物,在类似TME的条件下金属浸出可忽略不计。这代表了一种有吸引力的替代方案,用于开发更安全的具有活性催化响应且不会产生浸出副现象的铜铁基纳米催化材料。