Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
MGH & BWH Center for Clinical Data Science, Suite 1303, 100 Cambridge St, Boston, MA, 02114, USA.
Skeletal Radiol. 2024 Feb;53(2):377-383. doi: 10.1007/s00256-023-04408-2. Epub 2023 Aug 2.
To develop a deep learning model to distinguish rheumatoid arthritis (RA) from osteoarthritis (OA) using hand radiographs and to evaluate the effects of changing pretraining and training parameters on model performance.
A convolutional neural network was retrospectively trained on 9714 hand radiograph exams from 8387 patients obtained from 2017 to 2021 at seven hospitals within an integrated healthcare network. Performance was assessed using an independent test set of 250 exams from 146 patients. Binary discriminatory capacity (no arthritis versus arthritis; RA versus not RA) and three-way classification (no arthritis versus OA versus RA) were evaluated. The effects of additional pretraining using musculoskeletal radiographs, using all views as opposed to only the posteroanterior view, and varying image resolution on model performance were also investigated. Area under the receiver operating characteristic curve (AUC) and Cohen's kappa coefficient were used to evaluate diagnostic performance.
For no arthritis versus arthritis, the model achieved an AUC of 0.975 (95% CI: 0.957, 0.989). For RA versus not RA, the model achieved an AUC of 0.955 (95% CI: 0.919, 0.983). For three-way classification, the model achieved a kappa of 0.806 (95% CI: 0.742, 0.866) and accuracy of 87.2% (95% CI: 83.2%, 91.2%) on the test set. Increasing image resolution increased performance up to 1024 × 1024 pixels. Additional pretraining on musculoskeletal radiographs and using all views did not significantly affect performance.
A deep learning model can be used to distinguish no arthritis, OA, and RA on hand radiographs with high performance.
利用手部 X 光片开发一种深度学习模型,以区分类风湿关节炎(RA)和骨关节炎(OA),并评估改变预训练和训练参数对模型性能的影响。
回顾性地在 2017 年至 2021 年期间,从一个综合医疗网络中的 7 家医院的 8387 名患者中获得的 9714 份手部 X 光片检查中训练了一个卷积神经网络。使用来自 146 名患者的 250 份独立测试集中的检查结果来评估性能。评估了二元判别能力(无关节炎与关节炎;RA 与非 RA)和三分类(无关节炎与 OA 与 RA)。还研究了使用肌肉骨骼 X 光片进行额外预训练、使用所有视图而不是仅使用后前视图以及改变图像分辨率对模型性能的影响。使用接收器工作特征曲线(AUC)下面积和 Cohen's kappa 系数来评估诊断性能。
对于无关节炎与关节炎,该模型的 AUC 为 0.975(95%CI:0.957,0.989)。对于 RA 与非 RA,该模型的 AUC 为 0.955(95%CI:0.919,0.983)。对于三分类,该模型在测试集上的kappa 值为 0.806(95%CI:0.742,0.866),准确率为 87.2%(95%CI:83.2%,91.2%)。增加图像分辨率可提高性能,最高可达 1024×1024 像素。在肌肉骨骼 X 光片上进行额外预训练和使用所有视图并没有显著影响性能。
深度学习模型可用于对手部 X 光片进行无关节炎、OA 和 RA 的区分,具有较高的性能。