Suppr超能文献

深度学习方法自动分类类风湿关节炎、骨关节炎和正常手部 X 光片。

Automated Classification of Rheumatoid Arthritis, Osteoarthritis, and Normal Hand Radiographs with Deep Learning Methods.

机构信息

Department of Rheumatology, Faculty of Medicine, Kırıkkale University, 71450, Kırıkkale, Turkey.

Department of Computer Engineering, Faculty of Engineering, Çankaya University, 06790, Ankara, Turkey.

出版信息

J Digit Imaging. 2022 Apr;35(2):193-199. doi: 10.1007/s10278-021-00564-w. Epub 2022 Jan 11.

Abstract

Rheumatoid arthritis and hand osteoarthritis are two different arthritis that causes pain, function limitation, and permanent joint damage in the hands. Plain hand radiographs are the most commonly used imaging methods for the diagnosis, differential diagnosis, and monitoring of rheumatoid arthritis and osteoarthritis. In this retrospective study, the You Only Look Once (YOLO) algorithm was used to obtain hand images from original radiographs without data loss, and classification was made by applying transfer learning with a pre-trained VGG-16 network. The data augmentation method was applied during training. The results of the study were evaluated with performance metrics such as accuracy, sensitivity, specificity, and precision calculated from the confusion matrix, and AUC (area under the ROC curve) calculated from ROC (receiver operating characteristic) curve. In the classification of rheumatoid arthritis and normal hand radiographs, 90.7%, 92.6%, 88.7%, 89.3%, and 0.97 accuracy, sensitivity, specificity, precision, and AUC results, respectively, and in the classification of osteoarthritis and normal hand radiographs, 90.8%, 91.4%, 90.2%, 91.4%, and 0.96 accuracy, sensitivity, specificity, precision, and AUC results were obtained, respectively. In the classification of rheumatoid arthritis, osteoarthritis, and normal hand radiographs, an 80.6% accuracy result was obtained. In this study, to develop an end-to-end computerized method, the YOLOv4 algorithm was used for object detection, and a pre-trained VGG-16 network was used for the classification of hand radiographs. This computer-aided diagnosis method can assist clinicians in interpreting hand radiographs, especially in rheumatoid arthritis and osteoarthritis.

摘要

类风湿关节炎和手骨关节炎是两种不同的关节炎,它们会导致手部疼痛、功能受限和永久性关节损伤。手部平片是诊断、鉴别诊断和监测类风湿关节炎和骨关节炎最常用的影像学方法。在这项回顾性研究中,使用了 You Only Look Once (YOLO) 算法从原始 X 光片中获取手部图像,而不会造成数据丢失,并通过应用带有预训练 VGG-16 网络的迁移学习进行分类。在训练过程中应用了数据增强方法。通过从混淆矩阵计算的准确性、敏感度、特异性和精度等性能指标以及从 ROC(接收器工作特征)曲线计算的 AUC(ROC 曲线下面积)来评估研究结果。在类风湿关节炎和正常手部 X 光片的分类中,分别获得了 90.7%、92.6%、88.7%、89.3%和 0.97 的准确性、敏感度、特异性、精度和 AUC 结果,而在骨关节炎和正常手部 X 光片的分类中,分别获得了 90.8%、91.4%、90.2%、91.4%和 0.96 的准确性、敏感度、特异性、精度和 AUC 结果。在类风湿关节炎、骨关节炎和正常手部 X 光片的分类中,获得了 80.6%的准确性结果。在这项研究中,为了开发端到端的计算机方法,使用了 YOLOv4 算法进行目标检测,并使用了预训练的 VGG-16 网络对手部 X 光片进行分类。这种计算机辅助诊断方法可以帮助临床医生解读手部 X 光片,特别是在类风湿关节炎和骨关节炎方面。

相似文献

1
Automated Classification of Rheumatoid Arthritis, Osteoarthritis, and Normal Hand Radiographs with Deep Learning Methods.
J Digit Imaging. 2022 Apr;35(2):193-199. doi: 10.1007/s10278-021-00564-w. Epub 2022 Jan 11.
2
Detection of rheumatoid arthritis from hand radiographs using a convolutional neural network.
Clin Rheumatol. 2020 Apr;39(4):969-974. doi: 10.1007/s10067-019-04487-4. Epub 2019 Mar 8.
3
Detection of hip osteoarthritis by using plain pelvic radiographs with deep learning methods.
Skeletal Radiol. 2020 Sep;49(9):1369-1374. doi: 10.1007/s00256-020-03433-9. Epub 2020 Apr 4.
4
Deep learning methods in the diagnosis of sacroiliitis from plain pelvic radiographs.
Mod Rheumatol. 2023 Jan 3;33(1):202-206. doi: 10.1093/mr/roab124.
5
Deep learning discrimination of rheumatoid arthritis from osteoarthritis on hand radiography.
Skeletal Radiol. 2024 Feb;53(2):377-383. doi: 10.1007/s00256-023-04408-2. Epub 2023 Aug 2.
6
Automated evaluation of rheumatoid arthritis from hand radiographs using Machine Learning and deep learning techniques.
Proc Inst Mech Eng H. 2022 Aug;236(8):1238-1249. doi: 10.1177/09544119221109735. Epub 2022 Jul 12.
7
Use of deep learning methods for hand fracture detection from plain hand radiographs.
Ulus Travma Acil Cerrahi Derg. 2022 Jan;28(2):196-201. doi: 10.14744/tjtes.2020.06944.
9
Automated semantic labeling of pediatric musculoskeletal radiographs using deep learning.
Pediatr Radiol. 2019 Jul;49(8):1066-1070. doi: 10.1007/s00247-019-04408-2. Epub 2019 Apr 30.
10
Radiograph-based rheumatoid arthritis diagnosis via convolutional neural network.
BMC Med Imaging. 2024 Jul 22;24(1):180. doi: 10.1186/s12880-024-01362-w.

引用本文的文献

4
Artificial intelligence in rheumatology research: what is it good for?
RMD Open. 2025 Jan 8;11(1):e004309. doi: 10.1136/rmdopen-2024-004309.
6
Can eye-tracking help to create a new method for X-ray analysis of rheumatoid arthritis patients, including joint segmentation and scoring methods?
PLOS Digit Health. 2024 Oct 7;3(10):e0000616. doi: 10.1371/journal.pdig.0000616. eCollection 2024 Oct.
9
Advancing precision rheumatology: applications of machine learning for rheumatoid arthritis management.
Front Immunol. 2024 Jun 10;15:1409555. doi: 10.3389/fimmu.2024.1409555. eCollection 2024.
10
Detection and Grading of Radiographic Hand Osteoarthritis Using an Automated Machine Learning Platform.
ACR Open Rheumatol. 2024 Jun;6(6):388-395. doi: 10.1002/acr2.11665. Epub 2024 Apr 4.

本文引用的文献

1
Face mask detection using YOLOv3 and faster R-CNN models: COVID-19 environment.
Multimed Tools Appl. 2021;80(13):19753-19768. doi: 10.1007/s11042-021-10711-8. Epub 2021 Mar 1.
2
YOLO Based Breast Masses Detection and Classification in Full-Field Digital Mammograms.
Comput Methods Programs Biomed. 2021 Mar;200:105823. doi: 10.1016/j.cmpb.2020.105823. Epub 2020 Nov 4.
3
Detection of hip osteoarthritis by using plain pelvic radiographs with deep learning methods.
Skeletal Radiol. 2020 Sep;49(9):1369-1374. doi: 10.1007/s00256-020-03433-9. Epub 2020 Apr 4.
4
Detection of rheumatoid arthritis from hand radiographs using a convolutional neural network.
Clin Rheumatol. 2020 Apr;39(4):969-974. doi: 10.1007/s10067-019-04487-4. Epub 2019 Mar 8.
5
Transfer Representation Learning using Inception-V3 for the Detection of Masses in Mammography.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:2587-2590. doi: 10.1109/EMBC.2018.8512750.
6
Medical Image Analysis using Convolutional Neural Networks: A Review.
J Med Syst. 2018 Oct 8;42(11):226. doi: 10.1007/s10916-018-1088-1.
7
Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks.
Clin Radiol. 2018 May;73(5):439-445. doi: 10.1016/j.crad.2017.11.015. Epub 2017 Dec 18.
8
A survey on deep learning in medical image analysis.
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
10
Imaging for osteoarthritis.
Ann Phys Rehabil Med. 2016 Jun;59(3):161-169. doi: 10.1016/j.rehab.2015.12.003. Epub 2016 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验