College of Medicine - Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA.
Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
Ann Biomed Eng. 2024 May;52(5):1115-1118. doi: 10.1007/s10439-023-03327-6. Epub 2023 Aug 2.
Advancements in artificial intelligence (AI) provide many helpful tools for healthcare, one of which includes AI chatbots that use natural language processing to create humanlike, conversational dialog. These chatbots have general cognitive skills and are able to engage with clinicians and patients to discuss patients' health conditions and what they may be at risk for. While chatbot engines have access to a wide range of medical texts and research papers, they currently provide high-level, generic responses and are limited in their ability to provide diagnostic guidance and clinical advice to patients on an individual level. The essay discusses the use of retrieval-augmented generation (RAG), which can be used to improve the specificity of user-entered prompts and thereby enhance the detail in AI chatbot responses. By embedding more recent clinical data and trusted medical sources, such as clinical guidelines, into the chatbot models, AI chatbots can provide more patient-specific guidance, faster diagnoses and treatment recommendations, and greater improvement of patient outcomes.
人工智能(AI)的进步为医疗保健提供了许多有用的工具,其中之一包括使用自然语言处理技术创建类人对话的 AI 聊天机器人。这些聊天机器人具有一般认知技能,能够与临床医生和患者进行交流,讨论患者的健康状况和可能面临的风险。虽然聊天机器人引擎可以访问广泛的医学文本和研究论文,但它们目前提供的是高级、通用的回复,并且在为患者提供个体层面的诊断指导和临床建议方面能力有限。本文讨论了检索增强生成(RAG)的使用,它可以用于提高用户输入提示的特异性,从而增强 AI 聊天机器人回复的详细程度。通过将更近期的临床数据和可信的医疗资源(如临床指南)嵌入到聊天机器人模型中,AI 聊天机器人可以提供更具针对性的患者指导、更快的诊断和治疗建议,以及改善患者的预后。