Asnani Vishal, Yin Xi, Hassner Tal, Liu Xiaoming
IEEE Trans Pattern Anal Mach Intell. 2023 Dec;45(12):15477-15493. doi: 10.1109/TPAMI.2023.3301451. Epub 2023 Nov 3.
State-of-the-art (SOTA) Generative Models (GMs) can synthesize photo-realistic images that are hard for humans to distinguish from genuine photos. Identifying and understanding manipulated media are crucial to mitigate the social concerns on the potential misuse of GMs. We propose to perform reverse engineering of GMs to infer model hyperparameters from the images generated by these models. We define a novel problem, "model parsing", as estimating GM network architectures and training loss functions by examining their generated images - a task seemingly impossible for human beings. To tackle this problem, we propose a framework with two components: a Fingerprint Estimation Network (FEN), which estimates a GM fingerprint from a generated image by training with four constraints to encourage the fingerprint to have desired properties, and a Parsing Network (PN), which predicts network architecture and loss functions from the estimated fingerprints. To evaluate our approach, we collect a fake image dataset with 100 K images generated by 116 different GMs. Extensive experiments show encouraging results in parsing the hyperparameters of the unseen models. Finally, our fingerprint estimation can be leveraged for deepfake detection and image attribution, as we show by reporting SOTA results on both the deepfake detection (Celeb-DF) and image attribution benchmarks.
最先进的(SOTA)生成模型(GMs)可以合成逼真的图像,人类很难将其与真实照片区分开来。识别和理解经过处理的媒体对于减轻社会对生成模型潜在滥用的担忧至关重要。我们建议对生成模型进行逆向工程,以便从这些模型生成的图像中推断模型超参数。我们定义了一个新问题,即“模型解析”,通过检查生成的图像来估计生成模型的网络架构和训练损失函数,这一任务对人类来说似乎是不可能完成的。为了解决这个问题,我们提出了一个由两个组件组成的框架:指纹估计网络(FEN),它通过在四个约束条件下进行训练,从生成的图像中估计生成模型的指纹,以促使指纹具有所需的属性;以及解析网络(PN),它从估计的指纹中预测网络架构和损失函数。为了评估我们的方法,我们收集了一个包含100K张由116个不同生成模型生成的虚假图像的数据集。大量实验表明,在解析未知模型的超参数方面取得了令人鼓舞的结果。最后,我们的指纹估计可用于深度伪造检测和图像归属,正如我们在深度伪造检测(Celeb-DF)和图像归属基准测试中报告的最先进结果所显示的那样。