Suppr超能文献

深度伪造媒体取证:现状与未来挑战。

Deepfake Media Forensics: Status and Future Challenges.

作者信息

Amerini Irene, Barni Mauro, Battiato Sebastiano, Bestagini Paolo, Boato Giulia, Bruni Vittoria, Caldelli Roberto, De Natale Francesco, De Nicola Rocco, Guarnera Luca, Mandelli Sara, Majid Taiba, Marcialis Gian Luca, Micheletto Marco, Montibeller Andrea, Orrù Giulia, Ortis Alessandro, Perazzo Pericle, Puglisi Giovanni, Purnekar Nischay, Salvi Davide, Tubaro Stefano, Villari Massimo, Vitulano Domenico

机构信息

Department of Computer, Control and Management Engineering, Sapienza University of Rome, 00185 Roma, Italy.

Department of Information Engineering and Mathematics, University of Siena, 53100 Siena, Italy.

出版信息

J Imaging. 2025 Feb 28;11(3):73. doi: 10.3390/jimaging11030073.

Abstract

The rise of AI-generated synthetic media, or deepfakes, has introduced unprecedented opportunities and challenges across various fields, including entertainment, cybersecurity, and digital communication. Using advanced frameworks such as Generative Adversarial Networks (GANs) and Diffusion Models (DMs), deepfakes are capable of producing highly realistic yet fabricated content, while these advancements enable creative and innovative applications, they also pose severe ethical, social, and security risks due to their potential misuse. The proliferation of deepfakes has triggered phenomena like "Impostor Bias", a growing skepticism toward the authenticity of multimedia content, further complicating trust in digital interactions. This paper is mainly based on the description of a research project called FF4ALL (FF4ALL-Detection of Deep Fake Media and Life-Long Media Authentication) for the detection and authentication of deepfakes, focusing on areas such as forensic attribution, passive and active authentication, and detection in real-world scenarios. By exploring both the strengths and limitations of current methodologies, we highlight critical research gaps and propose directions for future advancements to ensure media integrity and trustworthiness in an era increasingly dominated by synthetic media.

摘要

人工智能生成的合成媒体(即深度伪造)的兴起,在包括娱乐、网络安全和数字通信在内的各个领域带来了前所未有的机遇和挑战。利用生成对抗网络(GAN)和扩散模型(DM)等先进框架,深度伪造能够生成高度逼真但却是伪造的内容。虽然这些进展催生了富有创意和创新性的应用,但由于其可能被滥用,也带来了严重的伦理、社会和安全风险。深度伪造的泛滥引发了诸如“冒名顶替者偏见”等现象,即人们对多媒体内容真实性的怀疑日益增加,这使得数字互动中的信任问题更加复杂。本文主要基于一个名为FF4ALL(深度伪造媒体检测与终身媒体认证)的研究项目的描述,该项目用于深度伪造的检测和认证,重点关注法医归因、被动和主动认证以及现实场景中的检测等领域。通过探讨当前方法的优势和局限性,我们突出了关键的研究差距,并提出了未来进展的方向,以确保在一个日益由合成媒体主导的时代的媒体完整性和可信度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验