Suppr超能文献

基于电子健康记录的门诊静脉抗生素治疗(OPAT)患者再入院风险模型的性能

Electronic health record-based readmission risk model performance for patients undergoing outpatient parenteral antibiotic therapy (OPAT).

作者信息

Drew Richard, Brenneman Ethan, Funaro Jason, Lee Hui-Jie, Yarrington Michael, Dicks Kristen, Gallagher David

机构信息

Duke University School of Medicine (Division of Infectious Diseases), Durham, North Carolina, United States of America.

Campbell University College of Pharmacy & Health Sciences, Buies Creek, North Carolina, United States of America.

出版信息

PLOS Digit Health. 2023 Aug 2;2(8):e0000323. doi: 10.1371/journal.pdig.0000323. eCollection 2023 Aug.

Abstract

BACKGROUND

Outpatient Parenteral Antibiotic Therapy (OPAT) provides coordinated services to deliver parenteral antibiotics outside of the acute care setting. However, the reduction in monitoring and supervision may impact the risks of readmission to the hospital. While identifying those at greatest risk of hospital readmission through use of computer decision support systems could aid in its prevention, validation of such tools in this patient population is lacking.

OBJECTIVE

The primary aim of this study is to determine the ability of the electronic health record-embedded EPIC Unplanned Readmission Model 1 to predict all-cause 30-day hospital unplanned readmissions in discharged patients receiving OPAT through the Duke University Heath System (DUHS) OPAT program. We then explored the impact of OPAT-specific variables on model performance.

METHODS

This retrospective cohort study included patients ≥ 18 years of age discharged to home or skilled nursing facility between July 1, 2019 -February 1, 2020 with OPAT care initiated inpatient and coordinated by the DUHS OPAT program and with at least one Epic readmission score during the index hospitalization. Those with a planned duration of OPAT < 7 days, receiving OPAT administered in a long-term acute care facility (LTAC), or ongoing renal replacement therapy were excluded. The relationship between the primary outcome (unplanned readmission during 30-day post-index discharge) and Epic readmission scores during the index admission (discharge and maximum) was examined using multivariable logistic regression models adjusted for additional predictors. The performance of the models was assessed with the scaled Brier score for overall model performance, the area under the receiver operating characteristics curve (C-index) for discrimination ability, calibration plot for calibration, and Hosmer-Lemeshow goodness-of-fit test for model fit.

RESULTS

The models incorporating maximum or discharge Epic readmission scores showed poor discrimination ability (C-index 0.51, 95% CI 0.45 to 0.58 for both models) in predicting 30-day unplanned readmission in the Duke OPAT cohort. Incorporating additional OPAT-specific variables did not improve the discrimination ability (C-index 0.55, 95% CI 0.49 to 0.62 for the max score; 0.56, 95% CI 0.49 to 0.62 for the discharge score). Although models for predicting 30-day unplanned OPAT-related readmission performed slightly better, discrimination ability was still poor (C-index 0.54, 95% CI 0.45 to 0.62 for both models).

CONCLUSION

EPIC Unplanned Readmission Model 1 scores were not useful in predicting either all-cause or OPAT-related 30-day unplanned readmission in the DUHS OPAT cohort. Further research is required to assess other predictors that can distinguish patients with higher risks of 30-day unplanned readmission in the DUHS OPAT patients.

摘要

背景

门诊肠外抗生素治疗(OPAT)提供协调服务,以便在急性护理环境之外给予肠外抗生素。然而,监测和监督的减少可能会影响再次入院的风险。虽然通过使用计算机决策支持系统识别那些再次入院风险最高的患者有助于预防再次入院,但缺乏对此类工具在该患者群体中的验证。

目的

本研究的主要目的是确定嵌入电子健康记录的EPIC非计划再入院模型1预测通过杜克大学健康系统(DUHS)OPAT计划接受OPAT治疗的出院患者30天内全因非计划再入院的能力。然后,我们探讨了OPAT特定变量对模型性能的影响。

方法

这项回顾性队列研究纳入了2019年7月1日至2020年2月1日期间出院回家或入住熟练护理机构、在住院期间开始接受OPAT护理并由DUHS OPAT计划协调、且在索引住院期间至少有一个Epic再入院评分的18岁及以上患者。计划OPAT持续时间<7天、在长期急性护理机构(LTAC)接受OPAT治疗或正在进行肾脏替代治疗的患者被排除。使用针对其他预测因素进行调整的多变量逻辑回归模型,研究主要结局(索引出院后30天内的非计划再入院)与索引入院期间(出院时和最高值)的Epic再入院评分之间的关系。使用缩放Brier评分评估模型的整体性能、使用受试者操作特征曲线下面积(C指数)评估判别能力、使用校准图评估校准情况、使用Hosmer-Lemeshow拟合优度检验评估模型拟合情况。

结果

纳入最高值或出院时Epic再入院评分的模型在预测杜克OPAT队列中30天非计划再入院方面显示出较差的判别能力(两个模型的C指数均为0.51,95%CI为0.45至0.58)。纳入额外的OPAT特定变量并未提高判别能力(最高值评分模型的C指数为0.55,95%CI为0.49至0.62;出院评分模型的C指数为0.56,95%CI为0.49至0.62)。尽管预测30天非计划OPAT相关再入院的模型表现稍好,但判别能力仍然较差(两个模型的C指数均为0.54,95%CI为0.45至0.62)。

结论

EPIC非计划再入院模型1评分在预测DUHS OPAT队列中全因或OPAT相关再入院方面无用。需要进一步研究以评估其他可区分DUHS OPAT患者中30天非计划再入院高风险患者的预测因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/833f/10396003/771355f6fdcd/pdig.0000323.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验