The Neuroscience Graduate Program, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14627, USA; Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14627, USA.
Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
Dev Biol. 2023 Nov;503:10-24. doi: 10.1016/j.ydbio.2023.07.007. Epub 2023 Aug 1.
The external globus pallidus (GPe) is an essential component of the basal ganglia, a group of subcortical nuclei that are involved in control of action. Changes in the firing of GPe neurons are associated with both passive and active body movements. Aberrant activity of GPe neurons has been linked to motor symptoms of a variety of movement disorders, such as Parkinson's Disease, Huntington's disease and dystonia. Recent studies have helped delineate functionally distinct subtypes of GABAergic GPe projection neurons. However, not much is known about specific molecular mechanisms underlying the development of GPe neuronal subtypes. We show that the transcriptional regulator Lmo3 is required for the development of medial ganglionic eminence derived Nkx2.1 and PV GPe neurons, but not lateral ganglionic eminence derived FoxP2 neurons. As a consequence of the reduction in PV neurons, Lmo3-null mice have a reduced GPe input to the subthalamic nucleus.
外苍白球(GPe)是基底神经节的一个重要组成部分,基底神经节是一组涉及运动控制的皮质下核团。GPe 神经元的放电变化与被动和主动身体运动都有关。GPe 神经元的异常活动与各种运动障碍的运动症状有关,如帕金森病、亨廷顿病和肌张力障碍。最近的研究有助于描绘出 GABA 能 GPe 投射神经元的功能上不同的亚型。然而,关于 GPe 神经元亚型发育的具体分子机制知之甚少。我们表明,转录调节因子 Lmo3 对于源自内侧神经节隆起的 Nkx2.1 和 PV GPe 神经元的发育是必需的,但不是源自外侧神经节隆起的 FoxP2 神经元。由于 PV 神经元减少,Lmo3 缺失小鼠的苍白球向丘脑底核的输入减少。