The Connecticut Agricultural Experiment Station (CAES), CT, USA; The Higher Institute of Applied Biology of Medenine (ISBAM), University of Gabes, Tunisia; Faculty of Sciences of Bizerte (FSB), University of Carthage, Tunisia.
The Connecticut Agricultural Experiment Station (CAES), CT, USA.
Pestic Biochem Physiol. 2023 Aug;194:105486. doi: 10.1016/j.pestbp.2023.105486. Epub 2023 Jun 5.
In this study, zinc and copper oxide nanoparticles (NPs) were synthesized using hemp (Cannabis sativa L.) leaves (ZnONP-HL and CuONP-HL), and their antifungal potential was assessed against Fusarium virguliforme in soybean (Glycine max L.). Hemp was selected because it is known to contain large quantities of secondary metabolites that can potentially enhance the reactivity of NPs through surface property modification. Synthesizing NPs with biologically derived materials allows to avoid the use of harsh and expensive synthetic reducing and capping agents. The ZnONP-HL and CuONP-HL showed average grain/crystallite size of 13.51 nm and 7.36 nm, respectively. The biologically synthesized NPs compared well with their chemically synthesized counterparts (ZnONP chem, and CuONP chem; 18.75 nm and 10.05 nm, respectively), confirming the stabilizing role of hemp-derived biomolecules. Analysis of the hemp leaf extract and functional groups that were associated with ZnONP-HL and CuONP-HL confirmed the presence of terpenes, flavonoids, and phenolic compounds. Biosynthesized NPs were applied on soybeans as bio-nano-fungicides against F. virguliforme via foliar treatments. ZnONP-HL and CuONP-HL at 200 μg/mL significantly (p < 0.05) increased (∼ 50%) soybean growth, compared to diseased controls. The NPs improved the nutrient (e.g., K, Ca, P) content and enhanced photosynthetic indicators of the plants by 100-200%. A 300% increase in the expression of soybean pathogenesis related GmPR genes encoding antifungal and defense proteins confirmed that the biosynthesized NPs enhanced disease resistance against the fungal phytopathogen. The findings from this study provide novel evidence of systemic suppression of fungal disease by nanobiopesticides, via promoting plant defense mechanisms.
在这项研究中,使用大麻(Cannabis sativa L.)叶合成了锌和氧化铜纳米粒子(NPs)(ZnONP-HL 和 CuONP-HL),并评估了它们对大豆(Glycine max L.)中尖孢镰刀菌的抗真菌潜力。选择大麻是因为它含有大量的次生代谢物,这些代谢物可能通过表面性质修饰来增强 NPs 的反应性。使用生物衍生材料合成 NPs 可以避免使用苛刻和昂贵的合成还原剂和封端剂。ZnONP-HL 和 CuONP-HL 的平均晶粒/晶体尺寸分别为 13.51nm 和 7.36nm。与化学合成的 NPs(ZnONP chem 和 CuONP chem;分别为 18.75nm 和 10.05nm)相比,生物合成的 NPs 表现良好,证实了大麻衍生生物分子的稳定作用。对大麻叶提取物和与 ZnONP-HL 和 CuONP-HL 相关的官能团的分析证实了萜类化合物、类黄酮和酚类化合物的存在。通过叶面处理,将生物合成的 NPs 作为生物纳米杀菌剂应用于大豆,以防治尖孢镰刀菌。与患病对照相比,200μg/mL 的 ZnONP-HL 和 CuONP-HL 显著(p<0.05)增加了(约 50%)大豆的生长。这些 NPs 提高了植物的营养物质(例如 K、Ca、P)含量,并将植物的光合指标提高了 100-200%。大豆病程相关 GmPR 基因编码的抗真菌和防御蛋白的表达增加了 300%,证实了生物合成的 NPs 增强了对真菌病原体的抗病性。这项研究的结果提供了纳米生物农药通过促进植物防御机制系统抑制真菌病害的新证据。