文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Plant extract-mediated biosynthesis of sulphur nanoparticles and their antibacterial and plant growth-promoting activity.

作者信息

Dasauni Khushboo, Nailwal Tapan K, Nenavathu Bhavani Prasad Naik

机构信息

Department of Biotechnology, Sir J.C. Bose Technical Campus, Bhimtal-263136, Kumaun University Nainital, Uttarakhand-India.

Department of Applied Sciences and Humanities, Indira Gandhi Delhi Technical University for Women, Delhi-110006-India.

出版信息

Heliyon. 2024 Sep 11;10(18):e37797. doi: 10.1016/j.heliyon.2024.e37797. eCollection 2024 Sep 30.


DOI:10.1016/j.heliyon.2024.e37797
PMID:39315212
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11417562/
Abstract

This study reports green synthesis of sulphur nanoparticles using sodium thiosulfate pentahydrate (NaSO5HO) and leaf extracts. X-ray diffraction (XRD) pattern and scanning electron microscopy (SEM) was employed to examine the crystallinity of the particles and morphological characteristics, proved both spherical and rod-shaped morphology of the S NPs having porous nature. The FTIR spectra revealed the interaction of the synthesized SNPs with the biomolecules present in the leaf extract. UV-VIS spectral investigations confirmed the production of SNPs from leaf extract and that these SNPs can be used for visible region photocatalysis for the removal of pollutants from wastewater. Energy dispersive X-ray (EDX) spectrum of the SNP shows a single peak around 2.4 keV, confirmed S NPs purity. TEM image revealed the formation of mainly nanorods having a width of ∼20-25 nm and a length of 50-100 nm. Furthermore, some spherical particles (∼20-30 nm) were also formed. HRTEM image of the rod-shaped particles clearly shows the crystal fringe spacing of 0.38 nm. Further, disc diffusion method (DDM) was used to check the antibacterial activity of S NPs against gram-positive (MTCC737) 18 ± 0.12 mm and gram-negative bacteria against (MTCC443) 21.5 ± 0.12 mm, (MTCC1522) 19.1 ± 0.12 mm, (MTCC3384) 17.8 ± 0.10 mm. Among all the strains of bacteria, (MTCC443) showed a maximum zone of inhibition of 21.5 ± 0.12 mm and its antibacterial activity is somewhat like streptomycin sulfate. These SNPs also promote growth of in pot experiment, resulting in a 30 % increase in biomass, 90 cm in shoot length and 28 cm in root length and higher fresh and dry weight (50g and 20g, respectively) with 1.0 mg mL NPs treatment. In addition, SEM-EDX confirmed the accumulation of nanomaterial in plant leaves. This environmentally friendly approach to SNP synthesis using extracts demonstrates both potent antibacterial properties and plant growth-promoting effects, making it a promising solution for agriculture and biomedicine.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2dc/11417562/00be41d3654a/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2dc/11417562/687a9abe5341/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2dc/11417562/733b34f0da4a/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2dc/11417562/3b177a0d515e/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2dc/11417562/318a0314e343/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2dc/11417562/79e23c7ed80d/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2dc/11417562/c7efc767434e/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2dc/11417562/2933b6f19bb3/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2dc/11417562/cbcacbdca004/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2dc/11417562/00be41d3654a/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2dc/11417562/687a9abe5341/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2dc/11417562/733b34f0da4a/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2dc/11417562/3b177a0d515e/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2dc/11417562/318a0314e343/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2dc/11417562/79e23c7ed80d/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2dc/11417562/c7efc767434e/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2dc/11417562/2933b6f19bb3/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2dc/11417562/cbcacbdca004/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2dc/11417562/00be41d3654a/gr8.jpg

相似文献

[1]
Plant extract-mediated biosynthesis of sulphur nanoparticles and their antibacterial and plant growth-promoting activity.

Heliyon. 2024-9-11

[2]
Phytochemical fabrication of ZnO nanoparticles and their antibacterial and anti-biofilm activity.

Sci Rep. 2024-8-24

[3]
An Eco-Friendly Synthesis Approach for Enhanced Photocatalytic and Antibacterial Properties of Copper Oxide Nanoparticles Using Algal Extract.

Int J Nanomedicine. 2024

[4]
Green synthesis of copper oxide nanoparticles using Abutilon indicum leaves extract and their evaluation of antibacterial, anticancer in human A549 lung and MDA-MB-231 breast cancer cells.

Food Chem Toxicol. 2022-10

[5]
Synthesis of silver nanoparticles assisted by aqueous root and leaf extracts of Mill and its antibacterial activity.

Heliyon. 2024-6-27

[6]
Biosynthesis of Silver Nanoparticles Using Culture Supernatant of sp. ARY1 and Their Antibacterial Activity.

Int J Nanomedicine. 2020-10-28

[7]
Populus ciliata mediated synthesis of silver nanoparticles and their antibacterial activity.

Microsc Res Tech. 2021-3

[8]
Phytofabrication of Silver/Silver Chloride Nanoparticles Using Aqueous Leaf Extract of : Characterization and Antibacterial Potential.

Molecules. 2019-11-30

[9]
Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity.

Spectrochim Acta A Mol Biomol Spectrosc. 2015-1-5

[10]
Green nanotechnology advances: green manufacturing of zinc nanoparticles, characterization, and foliar application on wheat and antibacterial characteristics using Mentha spicata (mint) and Ocimum basilicum (basil) leaf extracts.

Environ Sci Pollut Res Int. 2023-5

本文引用的文献

[1]
Recent advancements in deciphering the therapeutic properties of plant secondary metabolites: phenolics, terpenes, and alkaloids.

Plant Physiol Biochem. 2024-6

[2]
Bioactive ZnO Nanoparticles: Biosynthesis, Characterization and Potential Antimicrobial Applications.

Pharmaceutics. 2023-11-16

[3]
Biologically synthesized zinc and copper oxide nanoparticles using Cannabis sativa L. enhance soybean (Glycine max) defense against fusarium virguliforme.

Pestic Biochem Physiol. 2023-8

[4]
Ecofriendly synthesis and characterization of Ni codoped silica magnesium zirconium copper nanoceramics for wastewater treatment applications.

Sci Rep. 2022-6-14

[5]
Recent progress of phytogenic synthesis of ZnO, SnO, and CeO nanomaterials.

Bioprocess Biosyst Eng. 2022-4

[6]
Recent advances on botanical biosynthesis of nanoparticles for catalytic, water treatment and agricultural applications: A review.

Sci Total Environ. 2022-6-25

[7]
Green Synthesis, Characterization, and Antibacterial Properties of Silver Nanoparticles Obtained by Using Diverse Varieties of Leaf Extracts.

Molecules. 2021-7-1

[8]
Green-synthesized CeO nanoparticles for photocatalytic, antimicrobial, antioxidant and cytotoxicity activities.

J Mater Chem B. 2021-7-21

[9]
Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector.

J Nanobiotechnology. 2021-3-26

[10]
Zinc oxide and zinc oxide-based nanostructures: biogenic and phytogenic synthesis, properties and applications.

Bioprocess Biosyst Eng. 2021-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索