Suppr超能文献

一种用于检测数字市场中有组织零售欺诈的基于数字的机器学习设计。

A numeric-based machine learning design for detecting organized retail fraud in digital marketplaces.

作者信息

Mutemi Abed, Bacao Fernando

机构信息

NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Campus de Campolide, 1070-312, Lisboa, Portugal.

出版信息

Sci Rep. 2023 Aug 2;13(1):12499. doi: 10.1038/s41598-023-38304-5.

Abstract

Organized retail crime (ORC) is a significant issue for retailers, marketplace platforms, and consumers. Its prevalence and influence have increased fast in lockstep with the expansion of online commerce, digital devices, and communication platforms. Today, it is a costly affair, wreaking havoc on enterprises' overall revenues and continually jeopardizing community security. These negative consequences are set to rocket to unprecedented heights as more people and devices connect to the Internet. Detecting and responding to these terrible acts as early as possible is critical for protecting consumers and businesses while also keeping an eye on rising patterns and fraud. The issue of detecting fraud in general has been studied widely, especially in financial services, but studies focusing on organized retail crimes are extremely rare in literature. To contribute to the knowledge base in this area, we present a scalable machine learning strategy for detecting and isolating ORC listings on a prominent marketplace platform by merchants committing organized retail crimes or fraud. We employ a supervised learning approach to classify postings as fraudulent or real based on past data from buyer and seller behaviors and transactions on the platform. The proposed framework combines bespoke data preprocessing procedures, feature selection methods, and state-of-the-art class asymmetry resolution techniques to search for aligned classification algorithms capable of discriminating between fraudulent and legitimate listings in this context. Our best detection model obtains a recall score of 0.97 on the holdout set and 0.94 on the out-of-sample testing data set. We achieve these results based on a select set of 45 features out of 58.

摘要

有组织零售犯罪(ORC)对零售商、市场平台和消费者来说是一个重大问题。随着电子商务、数字设备和通信平台的扩展,其发生率和影响力迅速上升。如今,这是一件代价高昂的事情,对企业的整体收入造成严重破坏,并不断危及社区安全。随着越来越多的人和设备接入互联网,这些负面后果将飙升至前所未有的高度。尽早发现并应对这些恶劣行为对于保护消费者和企业,同时关注不断上升的模式和欺诈行为至关重要。一般来说,欺诈检测问题已经得到广泛研究,尤其是在金融服务领域,但文献中极少有专注于有组织零售犯罪的研究。为了丰富这一领域的知识库,我们提出了一种可扩展的机器学习策略,用于在一个知名市场平台上检测和隔离由实施有组织零售犯罪或欺诈行为的商家发布的ORC商品信息。我们采用监督学习方法,根据平台上买家和卖家行为及交易的历史数据,将帖子分类为欺诈或真实。所提出的框架结合了定制的数据预处理程序、特征选择方法和先进的类不平衡解决技术,以寻找能够在此背景下区分欺诈和合法商品信息的合适分类算法。我们最好的检测模型在保留集上的召回率为0.97,在样本外测试数据集上为0.94。我们基于从58个特征中选出的45个特征集取得了这些结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04fc/10397305/4ac82b00a04d/41598_2023_38304_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验