Suppr超能文献

具有混合时滞的忆阻神经网络的有限时间完全周期同步

Finite-time complete periodic synchronization of memristive neural networks with mixed delays.

作者信息

Brahmi Hajer, Ammar Boudour, Ksibi Amel, Cherif Farouk, Aldehim Ghadah, Alimi Adel M

机构信息

Research Groups on Intelligent Machines, National Engineering School of Sfax, University of Sfax, 3038, Sfax, Tunisia.

Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.

出版信息

Sci Rep. 2023 Aug 2;13(1):12545. doi: 10.1038/s41598-023-37737-2.

Abstract

In this paper we study the oscillatory behavior of a new class of memristor based neural networks with mixed delays and we prove the existence and uniqueness of the periodic solution of the system based on the concept of Filippov solutions of the differential equation with discontinuous right-hand side. In addition, some assumptions are determined to guarantee the globally exponentially stability of the solution. Then, we study the adaptive finite-time complete periodic synchronization problem and by applying Lyapunov-Krasovskii functional approach, a new adaptive controller and adaptive update rule have been developed. A useful finite-time complete synchronization condition is established in terms of linear matrix inequalities. Finally, an illustrative simulation is given to substantiate the main results.

摘要

在本文中,我们研究了一类具有混合时滞的新型忆阻器神经网络的振荡行为,并基于具有不连续右侧的微分方程的 Filippov 解的概念,证明了该系统周期解的存在性和唯一性。此外,确定了一些假设以保证解的全局指数稳定性。然后,我们研究了自适应有限时间完全周期同步问题,并通过应用 Lyapunov-Krasovskii 泛函方法,开发了一种新的自适应控制器和自适应更新规则。根据线性矩阵不等式建立了一个有用的有限时间完全同步条件。最后,给出了一个说明性仿真以证实主要结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c03c/10397264/6679539d8b0d/41598_2023_37737_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验