Suppr超能文献

从 RNA 测序数据中直接推断和控制遗传群体结构。

Direct inference and control of genetic population structure from RNA sequencing data.

机构信息

Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.

Department of Clinical Pathology, University of Melbourne, Parkville, VIC, Australia.

出版信息

Commun Biol. 2023 Aug 2;6(1):804. doi: 10.1038/s42003-023-05171-9.

Abstract

RNAseq data can be used to infer genetic variants, yet its use for estimating genetic population structure remains underexplored. Here, we construct a freely available computational tool (RGStraP) to estimate RNAseq-based genetic principal components (RG-PCs) and assess whether RG-PCs can be used to control for population structure in gene expression analyses. Using whole blood samples from understudied Nepalese populations and the Geuvadis study, we show that RG-PCs had comparable results to paired array-based genotypes, with high genotype concordance and high correlations of genetic principal components, capturing subpopulations within the dataset. In differential gene expression analysis, we found that inclusion of RG-PCs as covariates reduced test statistic inflation. Our paper demonstrates that genetic population structure can be directly inferred and controlled for using RNAseq data, thus facilitating improved retrospective and future analyses of transcriptomic data.

摘要

RNAseq 数据可用于推断遗传变异,但用于估计遗传群体结构的应用仍未得到充分探索。在这里,我们构建了一个免费的计算工具 (RGStraP),用于估计基于 RNAseq 的遗传主成分 (RG-PCs),并评估 RG-PCs 是否可用于控制基因表达分析中的群体结构。使用来自尼泊尔未充分研究的人群和 Geuvadis 研究的全血样本,我们表明 RG-PCs 的结果与配对的基于阵列的基因型相当,具有较高的基因型一致性和遗传主成分的高相关性,捕获了数据集内的亚群。在差异基因表达分析中,我们发现将 RG-PCs 作为协变量包含在内可减少检验统计量的膨胀。我们的论文表明,遗传群体结构可以直接从 RNAseq 数据中推断和控制,从而促进对转录组数据的改进的回顾性和未来分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a8/10397182/e32d83d1899f/42003_2023_5171_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验