Suppr超能文献

基于排列检验的方法增强环境混合物效应推断的研究:单指标分析方法的比较。

A Permutation Test-Based Approach to Strengthening Inference on the Effects of Environmental Mixtures: Comparison between Single-Index Analytic Methods.

机构信息

Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, Washington, USA.

Department of Pediatrics, University of Washington, Seattle, Washington, USA.

出版信息

Environ Health Perspect. 2022 Aug;130(8):87010. doi: 10.1289/EHP10570. Epub 2022 Aug 30.

Abstract

BACKGROUND

Optimization of mixture analyses is critical to assess potential impacts of human exposures to multiple pollutants. Single-index regression methods quantify total mixture association and chemical component contributions. Single-index methods include several variants of quantile g-computation (QGC) and weighted quantile sum regression (WQSr), though each has limitations.

OBJECTIVES

We developed a novel permutation test for WQSr and compared its performance to extant versions of WQSr and QGC in simulation studies and an analysis of prenatal phthalates and childhood cognition.

METHODS

WQSr uses ensemble nonlinear optimization to identify weights for mixture exposures in an index associated with the outcome in a prespecified direction, with ensembles based on bootstrap resampling (WQSBS) or random subsetting of exposures (WQSRS). Statistical significance can be assessed without splitting the data (Nosplit), by splitting the data into training and test sets (Split), by repeatedly holding out test sets (RH), or by using a novel permutation test (PT) to obtain a more accurate -value. QGC instead provides a sum mixture coefficient and component coefficients with no constraints on direction. In simulations, we compared false positive rates (FPR) and power to detect true associations and accuracy in estimating mixture weights. We also estimated associations between prenatal phthalate mixtures and childhood IQ in the Conditions Affecting Neurocognitive Development and Learning in Early Childhood cohort using each method.

RESULTS

FPR was well controlled at in all but the Nosplit WQSr variants. Among these methods, the WQSBS and WQSRS PT variants had the highest power (89%-98%), with lower power for QGC (85%-93%) and RH (60%-97%) or Split WQSr variants (40%-78%). WQSr methods estimated mixture weights 2-4 times more accurately than the QGC method. Coefficients for mixture associations with full scale IQ varied 3- to 4-fold across analytic methods.

DISCUSSION

WQSr paired with our novel permutation test best balanced power and false positive rate when assessing a mixture effect. As new methods develop, each should be examined for performance and applicability. https://doi.org/10.1289/EHP10570.

摘要

背景

混合物分析的优化对于评估人类暴露于多种污染物的潜在影响至关重要。单指标回归方法量化了混合物的整体关联和化学组分的贡献。单指标方法包括几种分位数广义估计方程(QGC)和加权分位数和回归(WQSr)的变体,尽管每种方法都有其局限性。

目的

我们开发了一种新的 WQSr 置换检验,并在模拟研究和产前邻苯二甲酸酯和儿童认知分析中,将其与现有的 WQSr 和 QGC 版本进行了比较。

方法

WQSr 使用集合非线性优化来确定与规定方向上的结果相关的指数中的混合物暴露的权重,集合基于引导重采样(WQSBS)或暴露的随机子集(WQSRS)。可以通过不分割数据(Nosplit)、通过将数据分割为训练集和测试集(Split)、通过重复留出测试集(RH)或通过使用新的置换检验(PT)来获得更准确的 - 值来评估统计显著性。QGC 则提供了一个没有方向限制的总和混合物系数和组分系数。在模拟中,我们比较了假阳性率(FPR)和检测真实关联的能力以及估计混合物权重的准确性。我们还使用每种方法在早期儿童条件影响神经认知发育和学习队列中估计了产前邻苯二甲酸酯混合物与儿童智商之间的关联。

结果

除了 Nosplit WQSr 变体之外,所有变体的 FPR 都控制在 以下。在这些方法中,WQSBS 和 WQSRS PT 变体具有最高的功效(89%-98%),而 QGC(85%-93%)和 RH(60%-97%)或 Split WQSr 变体(40%-78%)的功效较低。WQSr 方法估计混合物权重的准确性比 QGC 方法高 2-4 倍。与全量表智商的混合物关联系数在分析方法之间变化了 3-4 倍。

讨论

在评估混合物效应时,WQSr 与我们新的置换检验相结合,在功效和假阳性率之间取得了最佳平衡。随着新方法的发展,应检查每种方法的性能和适用性。https://doi.org/10.1289/EHP10570.

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad7b/9426671/cedbe6731e87/ehp10570_f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验