Helmholtz Pioneer Campus, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
Institute of AI for Health, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
Cell Rep Methods. 2023 Jul 13;3(7):100523. doi: 10.1016/j.crmeth.2023.100523. eCollection 2023 Jul 24.
Massive, parallelized 3D stem cell cultures for engineering human cell types require imaging methods with high time and spatial resolution to fully exploit technological advances in cell culture technologies. Here, we introduce a large-scale integrated microfluidic chip platform for automated 3D stem cell differentiation. To fully enable dynamic high-content imaging on the chip platform, we developed a label-free deep learning method called Bright2Nuc to predict nuclear staining in 3D from confocal microscopy bright-field images. Bright2Nuc was trained and applied to hundreds of 3D human induced pluripotent stem cell cultures differentiating toward definitive endoderm on a microfluidic platform. Combined with existing image analysis tools, Bright2Nuc segmented individual nuclei from bright-field images, quantified their morphological properties, predicted stem cell differentiation state, and tracked the cells over time. Our methods are available in an open-source pipeline, enabling researchers to upscale image acquisition and phenotyping of 3D cell culture.
大规模、并行的 3D 干细胞培养对于工程人类细胞类型需要具有高时间和空间分辨率的成像方法,以充分利用细胞培养技术的技术进步。在这里,我们介绍了一种用于自动化 3D 干细胞分化的大规模集成微流控芯片平台。为了在芯片平台上完全实现动态高内涵成像,我们开发了一种无标记深度学习方法,称为 Bright2Nuc,可从共聚焦显微镜明场图像中预测 3D 中的核染色。Bright2Nuc 经过训练并应用于数百个人类诱导多能干细胞培养物,这些培养物在微流控平台上向确定内胚层分化。结合现有的图像分析工具,Bright2Nuc 可以从明场图像中分割单个细胞核,量化它们的形态特征,预测干细胞分化状态,并随时间跟踪细胞。我们的方法可在开源管道中使用,使研究人员能够扩大 3D 细胞培养的图像采集和表型分析规模。