Suppr超能文献

InstantDL:一个用于图像分割和分类的易于使用的深度学习管道。

InstantDL: an easy-to-use deep learning pipeline for image segmentation and classification.

机构信息

Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.

School of Life Sciences, Technical University of Munich, Weihenstephan, Germany.

出版信息

BMC Bioinformatics. 2021 Mar 2;22(1):103. doi: 10.1186/s12859-021-04037-3.

Abstract

BACKGROUND

Deep learning contributes to uncovering molecular and cellular processes with highly performant algorithms. Convolutional neural networks have become the state-of-the-art tool to provide accurate and fast image data processing. However, published algorithms mostly solve only one specific problem and they typically require a considerable coding effort and machine learning background for their application.

RESULTS

We have thus developed InstantDL, a deep learning pipeline for four common image processing tasks: semantic segmentation, instance segmentation, pixel-wise regression and classification. InstantDL enables researchers with a basic computational background to apply debugged and benchmarked state-of-the-art deep learning algorithms to their own data with minimal effort. To make the pipeline robust, we have automated and standardized workflows and extensively tested it in different scenarios. Moreover, it allows assessing the uncertainty of predictions. We have benchmarked InstantDL on seven publicly available datasets achieving competitive performance without any parameter tuning. For customization of the pipeline to specific tasks, all code is easily accessible and well documented.

CONCLUSIONS

With InstantDL, we hope to empower biomedical researchers to conduct reproducible image processing with a convenient and easy-to-use pipeline.

摘要

背景

深度学习通过高性能算法有助于揭示分子和细胞过程。卷积神经网络已成为提供准确、快速图像数据处理的最新工具。然而,已发表的算法大多仅解决一个特定的问题,并且它们通常需要相当大的编码工作和机器学习背景才能应用。

结果

因此,我们开发了 InstantDL,这是一个用于四个常见图像处理任务的深度学习管道:语义分割、实例分割、像素级回归和分类。InstantDL 使具有基本计算背景的研究人员能够以最小的努力将经过调试和基准测试的最先进的深度学习算法应用于自己的数据。为了使管道具有鲁棒性,我们已经自动化和标准化了工作流程,并在不同场景中进行了广泛测试。此外,它还允许评估预测的不确定性。我们在七个公开可用的数据集上对 InstantDL 进行了基准测试,在没有任何参数调整的情况下实现了有竞争力的性能。为了将管道定制到特定任务,所有代码都易于访问且有详细的文档。

结论

通过 InstantDL,我们希望为生物医学研究人员提供一个方便易用的可重复图像处理管道。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f48/7971147/7b726e02813a/12859_2021_4037_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验