Qian Tongcheng, Shusta Eric V, Palecek Sean P
Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA.
Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA.
Curr Opin Genet Dev. 2015 Oct;34:54-60. doi: 10.1016/j.gde.2015.07.007. Epub 2015 Aug 24.
Microfluidic devices employ submillimeter length scale control of flow to achieve high-resolution spatial and temporal control over the microenvironment, providing powerful tools to elucidate mechanisms of human pluripotent stem cell (hPSC) regulation and to elicit desired hPSC fates. In addition, microfluidics allow control of paracrine and juxtracrine signaling, thereby enabling fabrication of microphysiological systems comprised of multiple cell types organized into organs-on-a-chip. Microfluidic cell culture systems can also be integrated with actuators and sensors, permitting construction of high-density arrays of cell-based biosensors for screening applications. This review describes recent advances in using microfluidics to understand mechanisms by which the microenvironment regulates hPSC fates and applications of microfluidics to realize the potential of hPSCs for in vitro modeling and screening applications.
微流控装置利用亚毫米级别的流动长度尺度控制,以实现对微环境的高分辨率时空控制,从而提供强大的工具来阐明人类多能干细胞(hPSC)的调控机制并引发所需的hPSC命运。此外,微流控技术能够控制旁分泌和近分泌信号传导,进而实现由多种细胞类型组成的微生理系统的构建,这些细胞类型被组织成芯片上的器官。微流控细胞培养系统还可以与致动器和传感器集成,从而构建用于筛选应用的基于细胞的高密度生物传感器阵列。本综述描述了利用微流控技术理解微环境调节hPSC命运的机制的最新进展,以及微流控技术在实现hPSC用于体外建模和筛选应用潜力方面的应用。