Torsi Riccardo, Munson Kyle T, Pendurthi Rahul, Marques Esteban, Van Troeye Benoit, Huberich Lysander, Schuler Bruno, Feidler Maxwell, Wang Ke, Pourtois Geoffrey, Das Saptarshi, Asbury John B, Lin Yu-Chuan, Robinson Joshua A
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
ACS Nano. 2023 Aug 22;17(16):15629-15640. doi: 10.1021/acsnano.3c02626. Epub 2023 Aug 3.
Substitutionally doped 2D transition metal dichalcogenides are primed for next-generation device applications such as field effect transistors (FET), sensors, and optoelectronic circuits. In this work, we demonstrate substitutional rhenium (Re) doping of MoS monolayers with controllable concentrations down to 500 ppm by metal-organic chemical vapor deposition (MOCVD). Surprisingly, we discover that even trace amounts of Re lead to a reduction in sulfur site defect density by 5-10×. models indicate the origin of the reduction is an increase in the free-energy of sulfur-vacancy formation at the MoS growth-front when Re is introduced. Defect photoluminescence (PL) commonly seen in undoped MOCVD MoS is suppressed by 6× at 0.05 atomic percent (at. %) Re and completely quenched with 1 at. % Re. Furthermore, we find that Re-MoS transistors exhibit a 2× increase in drain current and carrier mobility compared to undoped MoS, indicating that sulfur vacancy reduction improves carrier transport in the Re-MoS. This work provides important insights on how dopants affect 2D semiconductor growth dynamics, which can lead to improved crystal quality and device performance.
替代掺杂的二维过渡金属二硫属化物有望应用于下一代器件,如场效应晶体管(FET)、传感器和光电子电路。在这项工作中,我们通过金属有机化学气相沉积(MOCVD)展示了对单层MoS进行铼(Re)替代掺杂,其浓度可控制至低至500 ppm。令人惊讶的是,我们发现即使是痕量的Re也会使硫位点缺陷密度降低5 - 10倍。模型表明,这种降低的根源是在引入Re时,MoS生长前沿硫空位形成的自由能增加。未掺杂的MOCVD生长的MoS中常见的缺陷光致发光(PL)在Re含量为0.05原子百分比(at. %)时被抑制了6倍,而在Re含量为1 at. %时完全淬灭。此外,我们发现与未掺杂的MoS相比,Re - MoS晶体管的漏极电流和载流子迁移率提高了2倍,这表明硫空位的减少改善了Re - MoS中的载流子传输。这项工作为掺杂剂如何影响二维半导体生长动力学提供了重要见解,这可能会带来晶体质量和器件性能的提升。