Kang Mingu, Hong Woonggi, Lee Inseong, Park Seohak, Park Cheolmin, Bae Sanggeun, Lim Hyeongjin, Choi Sung-Yool
School of Electrical Engineering, Graduate School of Semiconductor Technology, Graphene/2D Materials Research Center, Center for Advanced Materials Discovery towards 3D Display, KAIST, Daehakro, Yuseong-gu, Daejeon 34141, Republic of Korea.
School of Electronics and Electrical Engineering, Convergence Semiconductor Research Center, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 16890, Republic of Korea.
ACS Appl Mater Interfaces. 2024 Aug 21;16(33):43849-43859. doi: 10.1021/acsami.4c08549. Epub 2024 Aug 12.
Molybdenum disulfide (MoS) is a promising candidate for next-generation transistor channel materials, boasting outstanding electrical properties and ultrathin structure. Conventional ion implantation processes are unsuitable for atomically thin two-dimensional (2D) materials, necessitating nondestructive doping methods. We proposed a novel approach: tunable n-type doping through sulfur vacancies (V) and p-type doping by nitrogen substitution in MoS, controlled by the duration of NH plasma treatment. Our results reveal that NH plasma exposure of 20 s increases the 2D sheet carrier density () in MoS field-effect transistors (FETs) by +4.92 × 10 cm at a gate bias of 0 V, attributable to sulfur vacancy generation. Conversely, treatment of 40 s reduces by -3.71 × 10 cm due to increased nitrogen doping. X-ray photoelectron spectroscopy, Raman spectroscopy, and photoluminescence analyses corroborate these electrical characterization results, indicating successful n- and p-type doping. Temperature-dependent measurements show that the Schottky barrier height at the metal-semiconductor contact decreases by -31 meV under n-type conditions and increases by +37 meV for p-type doping. This study highlights NH plasma treatment as a viable doping method for 2D materials in electronic and optoelectronic device engineering.
二硫化钼(MoS)是下一代晶体管沟道材料的一个有前景的候选者,具有出色的电学性能和超薄结构。传统的离子注入工艺不适用于原子级薄的二维(2D)材料,因此需要无损掺杂方法。我们提出了一种新方法:通过硫空位(V)进行可调n型掺杂以及在MoS中通过氮取代进行p型掺杂,这由NH等离子体处理的持续时间控制。我们的结果表明,在0 V的栅极偏压下,20 s的NH等离子体暴露使MoS场效应晶体管(FET)中的二维薄片载流子密度()增加了+4.92×10 cm,这归因于硫空位的产生。相反,40 s的处理由于氮掺杂增加使密度降低了-3.71×10 cm。X射线光电子能谱、拉曼光谱和光致发光分析证实了这些电学表征结果,表明成功实现了n型和p型掺杂。温度相关测量表明,在n型条件下,金属-半导体接触处的肖特基势垒高度降低了-31 meV,而在p型掺杂时增加了+37 meV。这项研究突出了NH等离子体处理作为二维材料在电子和光电器件工程中一种可行的掺杂方法。