Suppr超能文献

用于电子束转换过程中单原子和缺陷测量的动态扫描透射电子显微镜能量过滤谱

Dynamic STEM-EELS for single-atom and defect measurement during electron beam transformations.

作者信息

Roccapriore Kevin M, Torsi Riccardo, Robinson Joshua, Kalinin Sergei, Ziatdinov Maxim

机构信息

Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA.

出版信息

Sci Adv. 2024 Jul 19;10(29):eadn5899. doi: 10.1126/sciadv.adn5899. Epub 2024 Jul 17.

Abstract

This study introduces the integration of dynamic computer vision-enabled imaging with electron energy loss spectroscopy (EELS) in scanning transmission electron microscopy (STEM). This approach involves real-time discovery and analysis of atomic structures as they form, allowing us to observe the evolution of material properties at the atomic level, capturing transient states traditional techniques often miss. Rapid object detection and action system enhances the efficiency and accuracy of STEM-EELS by autonomously identifying and targeting only areas of interest. This machine learning (ML)-based approach differs from classical ML in that it must be executed on the fly, not using static data. We apply this technology to V-doped MoS, uncovering insights into defect formation and evolution under electron beam exposure. This approach opens uncharted avenues for exploring and characterizing materials in dynamic states, offering a pathway to increase our understanding of dynamic phenomena in materials under thermal, chemical, and beam stimuli.

摘要

本研究介绍了在扫描透射电子显微镜(STEM)中将动态计算机视觉成像与电子能量损失谱(EELS)相结合的方法。这种方法涉及对原子结构形成过程的实时发现和分析,使我们能够在原子水平上观察材料特性的演变,捕捉传统技术常常错过的瞬态。快速目标检测与动作系统通过仅自动识别和定位感兴趣区域,提高了STEM-EELS的效率和准确性。这种基于机器学习(ML)的方法与经典机器学习的不同之处在于,它必须实时执行,而不使用静态数据。我们将这项技术应用于V掺杂的MoS,揭示了电子束照射下缺陷形成和演变的见解。这种方法为探索和表征动态状态下的材料开辟了未知的途径,提供了一条增进我们对热、化学和束流刺激下材料动态现象理解的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d231/466940/63c9cf14b40e/sciadv.adn5899-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验