College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, P. R. China.
Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, P. R. China.
ACS Appl Mater Interfaces. 2023 Aug 16;15(32):38214-38229. doi: 10.1021/acsami.3c04723. Epub 2023 Aug 3.
The advent of enzyme-facilitated cascade events in which endogenous substrates within the human body are used to generate reactive oxygen species (ROS) has spawned novel cancer treatment possibilities. In this study, a supramolecular cascade catalytic nanozyme system was successfully developed, exhibiting photothermal-enhanced multienzyme cascade catalytic and glutathione (GSH) depletion activities and ultimately triggering the apoptosis-ferroptosis synergistic tumor therapy. The nanozyme system was fabricated using β-cyclodextrin-functionalized polydopamine (PDA) as the substrate, which was then entangled with polyoxometalate (POM) electrostatic forces and assembled with adamantane-grafted hyaluronic acid and glucose oxidase (GOx) host-guest supramolecular interaction for tumor targeting and GOx loading. The catalytic function of GOx facilitates the conversion of glucose to HO and gluconic acid. In turn, this process affirms the propitious generation of hydroxyl radical (OH) through the POM-mediated cascade catalysis. Additionally, the POM species actively deplete the intracellular GSH pool, initiating a cascade catalytic tumor therapy. In addition, the PDA-POM-mediated photothermal hyperthermia boosted the cascade catalytic effect and increased ROS production. This confers considerable promise for photothermal therapy (PTT)/nanocatalytic cancer therapy on supramolecular nanozyme systems. The and antitumor efficacy studies demonstrated that the supramolecular cascade catalytic nanozyme system was effective at reducing tumor development while maintaining an acceptable level of biocompatibility. Henceforth, this study is to widen the scope of cascade catalytic nanoenzyme production using supramolecular techniques, as well as endeavor to delineate a prospective pathway for the application of PTT-enhanced nanocatalytic tumor therapy.
内源性底物在人体内生成活性氧物种(ROS)的酶促级联事件的出现,催生了新的癌症治疗可能性。在这项研究中,成功开发了一种超分子级联催化纳米酶系统,该系统具有光热增强的多酶级联催化和谷胱甘肽(GSH)耗竭活性,并最终引发凋亡-铁死亡协同肿瘤治疗。该纳米酶系统是使用β-环糊精功能化的聚多巴胺(PDA)作为底物制造的,然后通过多酸(POM)静电相互作用缠结,并与金刚烷接枝透明质酸和葡萄糖氧化酶(GOx)主客体超分子相互作用组装,以实现肿瘤靶向和 GOx 装载。GOx 的催化功能促进葡萄糖转化为 HO 和葡萄糖酸。反过来,通过 POM 介导的级联催化,这一过程肯定会产生羟基自由基(OH)。此外,POM 物种积极耗尽细胞内 GSH 池,引发级联催化肿瘤治疗。此外,PDA-POM 介导的光热高热增强了级联催化效应并增加了 ROS 的产生。这为光热疗法(PTT)/纳米催化癌症治疗在超分子纳米酶系统上提供了巨大的应用前景。和抗肿瘤功效研究表明,该超分子级联催化纳米酶系统在降低肿瘤发展的同时保持了可接受的生物相容性。因此,本研究旨在拓宽使用超分子技术生产级联催化纳米酶的范围,并努力为 PTT 增强的纳米催化肿瘤治疗的应用描绘出一个有前景的途径。
ACS Appl Mater Interfaces. 2023-8-16
Adv Healthc Mater. 2024-4
ACS Appl Mater Interfaces. 2023-4-12
ACS Appl Mater Interfaces. 2020-11-18
Int J Nanomedicine. 2025-5-1
Nanomedicine (Lond). 2025-2
Research (Wash D C). 2024-9-9
J Nanobiotechnology. 2023-12-20