Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States.
Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.
J Am Chem Soc. 2023 Aug 16;145(32):17632-17642. doi: 10.1021/jacs.3c03338. Epub 2023 Aug 3.
Chemoenzymatic techniques have been applied extensively to pharmaceutical development, most effectively when routine synthetic methods fail. The regioselective and stereoselective construction of structurally complex glycans is an elegant application of this approach that is seldom applied to positron emission tomography (PET) tracers. We sought a method to dimerize 2-deoxy-[F]-fluoro-d-glucose ([F]FDG), the most common tracer used in clinical imaging, to form [F]-labeled disaccharides for detecting microorganisms based on their bacteria-specific glycan incorporation. When [F]FDG was reacted with β-d-glucose-1-phosphate in the presence of maltose phosphorylase, the α-1,4- and α-1,3-linked products 2-deoxy-[F]-fluoro-maltose ([F]FDM) and 2-deoxy-2-[F]-fluoro-sakebiose ([F]FSK) were obtained. This method was further extended with the use of trehalose (α,α-1,1), laminaribiose (β-1,3), and cellobiose (β-1,4) phosphorylases to synthesize 2-deoxy-2-[F]fluoro-trehalose ([F]FDT), 2-deoxy-2-[F]fluoro-laminaribiose ([F]FDL), and 2-deoxy-2-[F]fluoro-cellobiose ([F]FDC). We subsequently tested [F]FDM and [F]FSK , showing accumulation by several clinically relevant pathogens including and , and demonstrated their specific uptake Both [F]FDM and [F]FSK were stable in human serum with high accumulation in preclinical infection models. The synthetic ease and high sensitivity of [F]FDM and [F]FSK to including methicillin-resistant (MRSA) strains strongly justify clinical translation of these tracers to infected patients. Furthermore, this work suggests that chemoenzymatic radiosyntheses of complex [F]FDG-derived oligomers will afford a wide array of PET radiotracers for infectious and oncologic applications.
化学酶技术已广泛应用于药物开发,在常规合成方法失败时效果最为显著。这种方法可以对结构复杂的聚糖进行区域和立体选择性构建,是一种很少应用于正电子发射断层扫描(PET)示踪剂的优雅应用。我们寻求一种将 2-脱氧-[F]-氟-D-葡萄糖([F]FDG)二聚化的方法,[F]FDG 是临床成像中最常用的示踪剂,形成用于检测微生物的[F]标记二糖,基于其细菌特异性聚糖掺入。当[F]FDG 在麦芽糖磷酸化酶存在下与β-D-葡萄糖-1-磷酸反应时,得到α-1,4-和α-1,3-连接产物 2-脱氧-[F]-氟麦芽糖([F]FDM)和 2-脱氧-2-[F]-氟山梨醇([F]FSK)。通过使用海藻糖(α,α-1,1)、纤维二糖(β-1,4)和纤维二糖(β-1,4)磷酸化酶,该方法得到了进一步扩展,合成了 2-脱氧-2-[F]氟海藻糖([F]FDT)、2-脱氧-2-[F]氟纤维二糖([F]FDL)和 2-脱氧-2-[F]氟纤维二糖([F]FDC)。随后,我们测试了[F]FDM 和[F]FSK,它们在包括和在内的几种临床相关病原体中显示出积累,并证明了它们的特异性摄取。[F]FDM 和[F]FSK 在人血清中稳定,在临床前感染模型中积累量高。[F]FDM 和[F]FSK 的合成简便性和对包括耐甲氧西林金黄色葡萄球菌(MRSA)在内的病原体的高灵敏度强烈证明了这些示踪剂在感染患者中的临床转化是合理的。此外,这项工作表明,复杂[F]FDG 衍生低聚物的化学酶放射性合成将为感染和肿瘤学应用提供广泛的 PET 放射性示踪剂。