Suppr超能文献

神经液耦合在睡眠和清醒状态下。

Neurofluid coupling during sleep and wake states.

机构信息

Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.

Department of Human Development and Family Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, 47907, USA.

出版信息

Sleep Med. 2023 Oct;110:44-53. doi: 10.1016/j.sleep.2023.07.021. Epub 2023 Jul 27.

Abstract

BACKGROUND

In clinical populations, the movement of cerebrospinal fluid (CSF) during sleep is a growing area of research with potential mechanistic connections in both neurodegenerative (e.g., Alzheimer's Disease) and neurodevelopmental disorders. However, we know relatively little about the processes that influence CSF movement. To inform clinical intervention targets this study assesses the coupling between (a) real-time CSF movement, (b) neuronal-driven movement, and (c) non-neuronal systemic physiology driven movement.

METHODS

This study included eight young, healthy volunteers, with concurrently acquired neurofluid dynamics using functional Magnetic Resonance Imaging (MRI), neural activity using Electroencephalography (EEG), and non-neuronal systemic physiology with peripheral functional Near-Infrared Spectroscopy (fNIRS). Neuronal and non-neuronal drivers were assessed temporally; wherein, EEG measured slow wave activity that preceded CSF movement was considered neuronally driven. Similarly, slow wave oscillations (assessed via fNIRS) that coupled with CSF movement were considered non-neuronal systemic physiology driven.

RESULTS AND CONCLUSIONS

Our results document neural contributions to CSF movement were only present during light NREM sleep but low-frequency non-neuronal oscillations were strongly coupled with CSF movement in all assessed states - awake, NREM-1, NREM-2. The clinical/research implications of these findings are two-fold. First, neuronal-driven oscillations contribute to CSF movement outside of deep sleep (NREM-3); therefore, interventions aimed at increasing CSF movement may yield meaningful increases with the promotion of NREM sleep more generally - a focus on NREM S3 may not be needed. Second, non-neuronal systemic oscillations contribute across wake and sleep stages; therefore, interventions may increase CSF movement by manipulating systemic physiology.

摘要

背景

在临床人群中,脑脊液(CSF)在睡眠期间的流动是一个研究领域,它与神经退行性疾病(如阿尔茨海默病)和神经发育障碍都有潜在的机制联系。然而,我们对影响 CSF 流动的过程知之甚少。为了为临床干预提供目标,本研究评估了(a)实时 CSF 流动、(b)神经元驱动的运动和(c)非神经元系统性生理驱动的运动之间的耦合。

方法

本研究包括 8 名年轻、健康的志愿者,同时使用功能磁共振成像(fMRI)进行神经流体动力学测量、脑电图(EEG)进行神经活动测量以及外周功能近红外光谱(fNIRS)进行非神经元系统性生理测量。对神经元和非神经元的驱动因素进行了时间评估;其中,EEG 测量的在 CSF 运动之前出现的慢波活动被认为是神经元驱动的。同样,与 CSF 运动耦合的慢波振荡(通过 fNIRS 评估)被认为是非神经元系统性生理驱动的。

结果和结论

我们的结果表明,只有在轻度非快速眼动睡眠期间才存在神经对 CSF 运动的贡献,但低频非神经元振荡在所有评估状态(清醒、NREM-1、NREM-2)中都与 CSF 运动强烈耦合。这些发现的临床/研究意义有两个方面。首先,神经元驱动的振荡在非快速眼动睡眠(NREM-3)之外也有助于 CSF 运动;因此,旨在增加 CSF 运动的干预措施可能会随着更普遍地促进非快速眼动睡眠而产生有意义的增加——可能不需要特别关注 NREM S3。其次,非神经元系统性振荡在清醒和睡眠阶段都有贡献;因此,通过调节系统性生理学,干预措施可能会增加 CSF 运动。

相似文献

1
Neurofluid coupling during sleep and wake states.神经液耦合在睡眠和清醒状态下。
Sleep Med. 2023 Oct;110:44-53. doi: 10.1016/j.sleep.2023.07.021. Epub 2023 Jul 27.
4
5
EEG microstates of wakefulness and NREM sleep.清醒和非快速眼动睡眠的 EEG 微观状态。
Neuroimage. 2012 Sep;62(3):2129-39. doi: 10.1016/j.neuroimage.2012.05.060. Epub 2012 May 30.

引用本文的文献

本文引用的文献

3
Autonomic arousals contribute to brain fluid pulsations during sleep.自主唤醒导致睡眠期间脑液脉动。
Neuroimage. 2022 Apr 1;249:118888. doi: 10.1016/j.neuroimage.2022.118888. Epub 2022 Jan 10.
4
Sleep, cerebrospinal fluid, and the glymphatic system: A systematic review.睡眠、脑脊液和糖质系统:系统评价。
Sleep Med Rev. 2022 Feb;61:101572. doi: 10.1016/j.smrv.2021.101572. Epub 2021 Nov 18.
9
Cerebral circulation time derived from fMRI signals in large blood vessels.基于 fMRI 信号的大血管脑循环时间。
J Magn Reson Imaging. 2019 Nov;50(5):1504-1513. doi: 10.1002/jmri.26765. Epub 2019 Apr 29.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验