Suppr超能文献

生态学中广泛存在的夸张偏差和选择性报告的经验证据。

Empirical evidence of widespread exaggeration bias and selective reporting in ecology.

机构信息

Mad Agriculture, Boulder, CO, USA.

Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Nat Ecol Evol. 2023 Sep;7(9):1525-1536. doi: 10.1038/s41559-023-02144-3. Epub 2023 Aug 3.

Abstract

In many scientific disciplines, common research practices have led to unreliable and exaggerated evidence about scientific phenomena. Here we describe some of these practices and quantify their pervasiveness in recent ecology publications in five popular journals. In an analysis of over 350 studies published between 2018 and 2020, we detect empirical evidence of exaggeration bias and selective reporting of statistically significant results. This evidence implies that the published effect sizes in ecology journals exaggerate the importance of the ecological relationships that they aim to quantify. An exaggerated evidence base hinders the ability of empirical ecology to reliably contribute to science, policy, and management. To increase the credibility of ecology research, we describe a set of actions that ecologists should take, including changes to scientific norms about what high-quality ecology looks like and expectations about what high-quality studies can deliver.

摘要

在许多科学学科中,常见的研究实践导致了关于科学现象的不可靠和夸大的证据。在这里,我们描述了其中一些实践,并在五个流行期刊中对最近的生态学出版物中这些实践的普遍性进行了量化。在对 2018 年至 2020 年期间发表的 350 多项研究的分析中,我们发现了夸大偏差和有选择地报告统计上显著结果的经验证据。这一证据表明,生态学杂志中发表的效应大小夸大了它们旨在量化的生态关系的重要性。一个夸大的证据基础阻碍了经验生态学可靠地为科学、政策和管理做出贡献的能力。为了提高生态学研究的可信度,我们描述了一组生态学家应该采取的行动,包括改变关于高质量生态学的科学规范,以及对高质量研究能够提供的成果的期望。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验