Suppr超能文献

基于改进量子遗传算法与自适应差分进化优化反向传播神经网络融合的心肌炎自主检测

Autonomous detection of myocarditis based on the fusion of improved quantum genetic algorithm and adaptive differential evolution optimization back propagation neural network.

作者信息

Wu Lei, Guo Shuli, Han Lina, Song Xiaowei, Zhao Zhilei, Cekderi Anil Baris

机构信息

National Key Lab of Autonomous Intelligent Unmanned Systems, School of Automation, Beijing Institute of Technology, Beijing, China.

Department of Cardiology, The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.

出版信息

Health Inf Sci Syst. 2023 Aug 1;11(1):33. doi: 10.1007/s13755-023-00237-8. eCollection 2023 Dec.

Abstract

Myocarditis is cardiac damage caused by a viral infection. Its result often leads to a variety of arrhythmias. However, rapid and reliable identification of myocarditis has a great impact on early diagnosis, expedited treatment, and improved patient survival rates. Therefore, a novel strategy for the autonomous detection of myocarditis is suggested in this work. First, the improved quantum genetic algorithm (IQGA) is proposed to extract the optimal features of ECG beat and heart rate variability (HRV) from raw ECG signals. Second, the backpropagation neural network (BPNN) is optimized using the adaptive differential evolution (ADE) algorithm to classify various ECG signal types with high accuracy. This study examines analogies among five different ECG signal types: normal, abnormal, myocarditis, myocardial infarction (MI), and prior myocardial infarction (PMI). Additionally, the study uses binary and multiclass classification to group myocarditis with other cardiovascular disorders in order to assess how well the algorithm performs in categorization. The experimental results demonstrate that the combination of IQGA and ADE-BPNN can effectively increase the precision and accuracy of myocarditis autonomous diagnosis. In addition, HRV assesses the method's robustness, and the classification tool can detect viruses in myocarditis patients one week before symptoms worsen. The model can be utilized in intensive care units or wearable monitoring devices and has strong performance in the detection of myocarditis.

摘要

心肌炎是由病毒感染引起的心脏损伤。其结果往往会导致各种心律失常。然而,快速、可靠地识别心肌炎对早期诊断、加快治疗以及提高患者生存率有很大影响。因此,本文提出了一种自主检测心肌炎的新策略。首先,提出了改进的量子遗传算法(IQGA),从原始心电图信号中提取心电图搏动和心率变异性(HRV)的最优特征。其次,使用自适应差分进化(ADE)算法对反向传播神经网络(BPNN)进行优化,以高精度分类各种心电图信号类型。本研究考察了五种不同心电图信号类型之间的相似性:正常、异常、心肌炎、心肌梗死(MI)和陈旧性心肌梗死(PMI)。此外,该研究使用二分类和多分类将心肌炎与其他心血管疾病进行分组,以评估算法在分类中的表现。实验结果表明,IQGA和ADE-BPNN的结合可以有效提高心肌炎自主诊断的精度和准确性。此外,HRV评估了该方法的稳健性,并且该分类工具可以在症状恶化前一周检测出心肌炎患者体内的病毒。该模型可用于重症监护病房或可穿戴监测设备,在心肌炎检测方面具有强大的性能。

相似文献

7
Patient-specific ECG beat classification technique.患者特异性心电图搏动分类技术。
Healthc Technol Lett. 2014 Sep 26;1(3):98-103. doi: 10.1049/htl.2014.0072. eCollection 2014 Sep.

本文引用的文献

5
Electrocardiographic Features of Immune Checkpoint Inhibitor-Associated Myocarditis.免疫检查点抑制剂相关性心肌炎的心电图特征
Curr Probl Cardiol. 2023 Feb;48(2):101478. doi: 10.1016/j.cpcardiol.2022.101478. Epub 2022 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验