Tigga Neha Prerna, Garg Shruti
Birla Institute of Technology, Mesra, Ranchi, India.
Health Inf Sci Syst. 2022 Dec 29;11(1):1. doi: 10.1007/s13755-022-00205-8. eCollection 2023 Dec.
Depression is a global challenge causing psychological and intellectual problems that require efficient diagnosis. Electroencephalogram (EEG) signals represent the functional state of the human brain and can help build an accurate and viable technique for the early prediction and treatment of depression.
An attention-based gated recurrent units transformer (AttGRUT) time-series model is proposed to efficiently identify EEG perturbations in depressive patients. Statistical, spectral and wavelet features were first extracted from the 60-channel EEG signal data. Then, two feature selection techniques, recursive feature elimination and the Boruta algorithm, both with Shapley additive explanations, were utilised for selecting essential features.
The proposed model outperformed the two baseline and two hybrid time-series models-long short-term memory (LSTM), gated recurrent units (GRU), convolutional neural network-LSTM (CNN-LSTM), and CNN-GRU-achieving an accuracy of up to 98.67%. Feature selection considerably increased the performance across all time-series models.
Based on the obtained results, novel feature selection greatly affected the results of the baseline and hybrid time-series models. The proposed AttGRUT can be implemented and tested in other domains by using different modalities for prediction.
The online version contains supplementary material available at 10.1007/s13755-022-00205-8.
抑郁症是一项全球性挑战,会引发心理和智力问题,需要进行有效诊断。脑电图(EEG)信号代表人类大脑的功能状态,有助于构建一种准确且可行的技术,用于抑郁症的早期预测和治疗。
提出了一种基于注意力的门控循环单元变压器(AttGRUT)时间序列模型,以有效识别抑郁症患者的脑电图扰动。首先从60通道的脑电图信号数据中提取统计、频谱和小波特征。然后,利用两种特征选择技术,即递归特征消除和具有Shapley加法解释的Boruta算法,来选择重要特征。
所提出的模型优于两个基线模型和两个混合时间序列模型——长短期记忆(LSTM)、门控循环单元(GRU)、卷积神经网络-LSTM(CNN-LSTM)和CNN-GRU,准确率高达98.67%。特征选择显著提高了所有时间序列模型的性能。
基于所得结果,新颖的特征选择对基线模型和混合时间序列模型的结果有很大影响。所提出的AttGRUT可以通过使用不同的模态进行预测,在其他领域中实施和测试。
在线版本包含可在10.1007/s13755-022-00205-8获取的补充材料。