Suppr超能文献

基于连续 T 波面积特征和多导联融合深度特征的心肌梗死检测方法。

Myocardial infarction detection method based on the continuous T-wave area feature and multi-lead-fusion deep features.

机构信息

School of Computer Science and Technology (School of Artificial Intelligence), Zhejiang Sci-Tech University, Hangzhou, People's Republic of China.

Department of Clinical Engineering, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, People's Republic of China.

出版信息

Physiol Meas. 2024 May 24;45(5). doi: 10.1088/1361-6579/ad46e1.

Abstract

Myocardial infarction (MI) is one of the most threatening cardiovascular diseases. This paper aims to explore a method for using an algorithm to autonomously classify MI based on the electrocardiogram (ECG).A detection method of MI that fuses continuous T-wave area (C_TWA) feature and ECG deep features is proposed. This method consists of three main parts: (1) The onset of MI is often accompanied by changes in the shape of the T-wave in the ECG, thus the area of the T-wave displayed on different heartbeats will be quite different. The adaptive sliding window method is used to detect the start and end of the T-wave, and calculate the C_TWA on the same ECG record. Additionally, the coefficient of variation of C_TWA is defined as the C_TWA feature of the ECG. (2) The multi lead fusion convolutional neural network was implemented to extract the deep features of the ECG. (3) The C_TWA feature and deep features of the ECG were fused by soft attention, and then inputted into the multi-layer perceptron to obtain the detection result.According to the inter-patient paradigm, the proposed method reached a 97.67% accuracy, 96.59% precision, and 98.96% recall on the PTB dataset, as well as reached 93.15% accuracy, 93.20% precision, and 95.14% recall on the clinical dataset.This method accurately extracts the feature of the C_TWA, and combines the deep features of the signal, thereby improving the detection accuracy and achieving favorable results on clinical datasets.

摘要

心肌梗死(MI)是威胁心血管健康最严重的疾病之一。本文旨在探索一种基于心电图(ECG)自动分类 MI 的算法。

提出了一种融合连续 T 波面积(C_TWA)特征和 ECG 深度特征的 MI 检测方法。该方法主要由三部分组成:(1)MI 的发作通常伴随着 ECG 中 T 波形态的变化,因此不同心跳显示的 T 波面积会有很大差异。采用自适应滑动窗口法检测 T 波的起止点,并在同一 ECG 记录上计算 C_TWA。此外,定义 C_TWA 的变异系数作为 ECG 的 C_TWA 特征。(2)实现多导联融合卷积神经网络提取 ECG 的深度特征。(3)通过软注意力融合 ECG 的 C_TWA 特征和深度特征,然后将其输入多层感知机以获得检测结果。根据患者间范式,该方法在 PTB 数据集上的准确率为 97.67%,精度为 96.59%,召回率为 98.96%,在临床数据集上的准确率为 93.15%,精度为 93.20%,召回率为 95.14%。该方法准确提取了 C_TWA 的特征,并结合了信号的深度特征,从而提高了检测精度,并在临床数据集上取得了良好的效果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验