Suppr超能文献

一个具有平衡评分、对接、排序和筛选能力的通用蛋白质-配体评分框架。

A generalized protein-ligand scoring framework with balanced scoring, docking, ranking and screening powers.

作者信息

Shen Chao, Zhang Xujun, Hsieh Chang-Yu, Deng Yafeng, Wang Dong, Xu Lei, Wu Jian, Li Dan, Kang Yu, Hou Tingjun, Pan Peichen

机构信息

Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China

State Key Lab of CAD&CG, Zhejiang University Hangzhou 310058 Zhejiang China.

出版信息

Chem Sci. 2023 Jul 4;14(30):8129-8146. doi: 10.1039/d3sc02044d. eCollection 2023 Aug 2.

Abstract

Applying machine learning algorithms to protein-ligand scoring functions has aroused widespread attention in recent years due to the high predictive accuracy and affordable computational cost. Nevertheless, most machine learning-based scoring functions are only applicable to a specific task, , binding affinity prediction, binding pose prediction or virtual screening, suggesting that the development of a scoring function with balanced performance in all critical tasks remains a grand challenge. To this end, we propose a novel parameterization strategy by introducing an adjustable binding affinity term that represents the correlation between the predicted outcomes and experimental data into the training of mixture density network. The resulting residue-atom distance likelihood potential not only retains the superior docking and screening power over all the other state-of-the-art approaches, but also achieves a remarkable improvement in scoring and ranking performance. We emphatically explore the impacts of several key elements on prediction accuracy as well as the task preference, and demonstrate that the performance of scoring/ranking and docking/screening tasks of a certain model could be well balanced through an appropriate manner. Overall, our study highlights the potential utility of our innovative parameterization strategy as well as the resulting scoring framework in future structure-based drug design.

摘要

近年来,由于预测准确性高且计算成本可承受,将机器学习算法应用于蛋白质 - 配体评分函数引起了广泛关注。然而,大多数基于机器学习的评分函数仅适用于特定任务,如结合亲和力预测、结合姿态预测或虚拟筛选,这表明开发一种在所有关键任务中性能平衡的评分函数仍然是一个巨大的挑战。为此,我们提出了一种新颖的参数化策略,通过引入一个可调节的结合亲和力项,该项表示预测结果与实验数据之间的相关性,将其纳入混合密度网络的训练中。由此产生的残基 - 原子距离似然势不仅在所有其他现有先进方法之上保留了卓越的对接和筛选能力,而且在评分和排序性能方面也取得了显著提高。我们着重探讨了几个关键因素对预测准确性以及任务偏好的影响,并证明通过适当的方式可以很好地平衡特定模型的评分/排序和对接/筛选任务的性能。总体而言,我们的研究突出了我们创新的参数化策略以及由此产生的评分框架在未来基于结构的药物设计中的潜在效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f685/10395315/0f246bcf11bf/d3sc02044d-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验