Suppr超能文献

利用人在回路优化指导人工假体调整:一项概念验证研究。

Using human-in-the-loop optimization for guiding manual prosthesis adjustments: a proof-of-concept study.

作者信息

Senatore Siena C, Takahashi Kota Z, Malcolm Philippe

机构信息

Biomechanics Research Building, University of Nebraska at Omaha, Omaha, NE, United States.

Department of Health and Kinesiology, University of Utah, Salt Lake City, UT, United States.

出版信息

Front Robot AI. 2023 Jul 19;10:1183170. doi: 10.3389/frobt.2023.1183170. eCollection 2023.

Abstract

Human-in-the-loop optimization algorithms have proven useful in optimizing complex interactive problems, such as the interaction between humans and robotic exoskeletons. Specifically, this methodology has been proven valid for reducing metabolic cost while wearing robotic exoskeletons. However, many prostheses and orthoses still consist of passive elements that require manual adjustments of settings. In the present study, we investigated if human-in-the-loop algorithms could guide faster manual adjustments in a procedure similar to fitting a prosthesis. Eight healthy participants wore a prosthesis simulator and walked on a treadmill at 0.8 ms under 16 combinations of shoe heel height and pylon height. A human-in-the-loop optimization algorithm was used to find an optimal combination for reducing the loading rate on the limb contralateral to the prosthesis simulator. To evaluate the performance of the optimization algorithm, we used a convergence criterium. We evaluated the accuracy by comparing it against the optimum from a full sweep of all combinations. In five out of the eight participants, the human-in-the-loop optimization reduced the time taken to find an optimal combination; however, in three participants, the human-in-the-loop optimization either converged by the last iteration or did not converge. Findings from this study show that the human-in-the-loop methodology could be helpful in tasks that require manually adjusting an assistive device, such as optimizing an unpowered prosthesis. However, further research is needed to achieve robust performance and evaluate applicability in persons with amputation wearing an actual prosthesis.

摘要

在回路优化算法已被证明在优化复杂的交互问题方面很有用,比如人类与机器人外骨骼之间的交互。具体而言,这种方法已被证明在穿戴机器人外骨骼时可有效降低代谢成本。然而,许多假肢和矫形器仍由需要手动调整设置的被动元件组成。在本研究中,我们调查了在回路算法是否能在类似于假肢适配的过程中指导更快的手动调整。八名健康参与者穿戴假肢模拟器,以0.8米/秒的速度在跑步机上行走,鞋跟高度和支杆高度有16种组合。使用在回路优化算法来找到一种最优组合,以降低与假肢模拟器对侧肢体上的负荷率。为了评估优化算法的性能,我们使用了收敛标准。通过将其与所有组合全面扫描得到的最优值进行比较来评估准确性。在八名参与者中的五名中,在回路优化减少了找到最优组合所需的时间;然而,在三名参与者中,在回路优化要么在最后一次迭代时收敛,要么未收敛。本研究结果表明,在回路方法可能有助于需要手动调整辅助设备的任务,比如优化无动力假肢。然而,需要进一步研究以实现稳健的性能,并评估在佩戴实际假肢的截肢者中的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8812/10394618/170937113e71/frobt-10-1183170-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验