Suppr超能文献

免疫细胞分布的多尺度空间建模能够预测原发性中枢神经系统淋巴瘤的生存率。

Multi-scale spatial modeling of immune cell distributions enables survival prediction in primary central nervous system lymphoma.

作者信息

Roemer Margaretha G M, van de Brug Tim, Bosch Erik, Berry Daniella, Hijmering Nathalie, Stathi Phylicia, Weijers Karin, Doorduijn Jeannette, Bromberg Jacoline, van de Wiel Mark, Ylstra Bauke, de Jong Daphne, Kim Yongsoo

机构信息

Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, Amsterdam, The Netherlands.

Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

出版信息

iScience. 2023 Jul 10;26(8):107331. doi: 10.1016/j.isci.2023.107331. eCollection 2023 Aug 18.

Abstract

To understand the clinical significance of the tumor microenvironment (TME), it is essential to study the interactions between malignant and non-malignant cells in clinical specimens. Here, we established a computational framework for a multiplex imaging system to comprehensively characterize spatial contexts of the TME at multiple scales, including close and long-distance spatial interactions between cell type pairs. We applied this framework to a total of 1,393 multiplex imaging data newly generated from 88 primary central nervous system lymphomas with complete follow-up data and identified significant prognostic subgroups mainly shaped by the spatial context. A supervised analysis confirmed a significant contribution of spatial context in predicting patient survival. In particular, we found an opposite prognostic value of macrophage infiltration depending on its proximity to specific cell types. Altogether, we provide a comprehensive framework to analyze spatial cellular interaction that can be broadly applied to other technologies and tumor contexts.

摘要

为了解肿瘤微环境(TME)的临床意义,研究临床标本中恶性细胞与非恶性细胞之间的相互作用至关重要。在此,我们为多重成像系统建立了一个计算框架,以在多个尺度上全面表征TME的空间背景,包括细胞类型对之间的近距离和远距离空间相互作用。我们将此框架应用于从88例原发性中枢神经系统淋巴瘤新生成的总共1393个多重成像数据,并结合完整的随访数据,确定了主要由空间背景塑造的显著预后亚组。一项监督分析证实了空间背景在预测患者生存方面的重要作用。特别是,我们发现巨噬细胞浸润的预后价值因其与特定细胞类型的接近程度而异。总之,我们提供了一个全面的框架来分析空间细胞相互作用,该框架可广泛应用于其他技术和肿瘤背景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a1/10393746/409b2745f905/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验