Suppr超能文献

轴突定位器:肿瘤支配神经纤维的自动分割

AxonFinder: Automated segmentation of tumor innervating neuronal fibers.

作者信息

Ait-Ahmad Kaoutar, Ak Cigdem, Thibault Guillaume, Chang Young Hwan, Eksi Sebnem Ece

机构信息

Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.

Department of Biomedical Engineering (BME), Oregon Health and Science University, Portland, OR, USA.

出版信息

Heliyon. 2024 Dec 15;11(1):e41209. doi: 10.1016/j.heliyon.2024.e41209. eCollection 2025 Jan 15.

Abstract

Neurosignaling is increasingly recognized as a critical factor in cancer progression, where neuronal innervation of primary tumors contributes to the disease's advancement. This study focuses on segmenting individual axons within the prostate tumor microenvironment, which have been challenging to detect and analyze due to their irregular morphologies. We present a novel deep learning-based approach for the automated segmentation of axons, AxonFinder, leveraging a U-Net model with a ResNet-101 encoder, based on a multiplexed imaging approach. Utilizing a dataset of whole-slide images from low-, intermediate-, and high-risk prostate cancer patients, we manually annotated axons to train our model, achieving significant accuracy in detecting axonal structures that were previously hard to segment. Our method achieves high performance, with a validation F1-score of 94 % and IoU of 90.78 %. Besides, the morphometric analysis that shows strong alignment between manual annotations and automated segmentation with nerve length and tortuosity closely matching manual measurements. Furthermore, our analysis includes a comprehensive assessment of axon density and morphological features across different CAPRA-S prostate cancer risk categories revealing a significant decline in axon density correlating with higher CAPRA-S prostate cancer risk scores. Our paper suggests the potential utility of neuronal markers in the prognostic assessment of prostate cancer in aiding the pathologist's assessment of tumor sections and advancing our understanding of neurosignaling in the tumor microenvironment.

摘要

神经信号传导日益被认为是癌症进展中的一个关键因素,原发性肿瘤的神经支配促进了疾病的发展。本研究的重点是在前列腺肿瘤微环境中分割单个轴突,由于其形态不规则,检测和分析这些轴突具有挑战性。我们提出了一种基于深度学习的轴突自动分割新方法AxonFinder,它基于多重成像方法,利用带有ResNet - 101编码器的U - Net模型。利用来自低、中、高风险前列腺癌患者的全切片图像数据集,我们手动标注轴突来训练模型,在检测以前难以分割的轴突结构方面取得了显著的准确性。我们的方法具有高性能,验证F1分数为94%,交并比为90.78%。此外,形态计量分析表明,手动标注与自动分割之间具有很强的一致性,神经长度和曲折度与手动测量结果紧密匹配。此外,我们的分析包括对不同CAPRA - S前列腺癌风险类别中轴突密度和形态特征的全面评估,结果显示轴突密度显著下降,且与较高的CAPRA - S前列腺癌风险评分相关。我们的论文表明,神经元标记物在前列腺癌的预后评估中具有潜在效用,有助于病理学家评估肿瘤切片,并增进我们对肿瘤微环境中神经信号传导的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59b0/11728976/6ebe858d3a63/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验