Department of Mechatronics Engineering, Jeju National University, Republic of Korea.
Department of Mechatronics Engineering, Jeju National University, Republic of Korea.
Transl Res. 2023 Dec;262:75-88. doi: 10.1016/j.trsl.2023.07.010. Epub 2023 Aug 2.
Tubulointerstitial fibrosis (TIF) is the most prominent cause which leads to chronic kidney disease (CKD) and end-stage renal failure. Despite extensive research, there have been many clinical trial failures, and there is currently no effective treatment to cure renal fibrosis. This demonstrates the necessity of more effective therapies and better preclinical models to screen potential drugs for TIF. In this study, we investigated the antifibrotic effect of the machine learning-based repurposed drug, lubiprostone, validated through an advanced proximal tubule on a chip system and in vivo UUO mice model. Lubiprostone significantly downregulated TIF biomarkers including connective tissue growth factor (CTGF), extracellular matrix deposition (Fibronectin and collagen), transforming growth factor (TGF-β) downstream signaling markers especially, Smad-2/3, matrix metalloproteinase (MMP2/9), plasminogen activator inhibitor-1 (PAI-1), EMT and JAK/STAT-3 pathway expression in the proximal tubule on a chip model and UUO model compared to the conventional 2D culture. These findings suggest that the proximal tubule on a chip model is a more physiologically relevant model for studying and identifying potential biomarkers for fibrosis compared to conventional in vitro 2D culture and alternative of an animal model. In conclusion, the high throughput Proximal tubule-on-chip system shows improved in vivo-like function and indicates the potential utility for renal fibrosis drug screening. Additionally, repurposed Lubiprostone shows an effective potency to treat TIF via inhibiting 3 major profibrotic signaling pathways such as TGFβ/Smad, JAK/STAT, and epithelial-mesenchymal transition (EMT), and restores kidney function.
肾小管间质性纤维化(TIF)是导致慢性肾脏病(CKD)和终末期肾衰竭的最主要原因。尽管进行了广泛的研究,但许多临床试验都失败了,目前尚无有效的治疗方法来治愈肾纤维化。这表明需要更有效的治疗方法和更好的临床前模型来筛选 TIF 的潜在药物。在这项研究中,我们通过先进的近端肾小管芯片系统和体内UUO 小鼠模型,研究了基于机器学习的重新利用药物鲁比前列酮的抗纤维化作用。与传统的 2D 培养相比,鲁比前列酮显著下调了 TIF 的生物标志物,包括结缔组织生长因子(CTGF)、细胞外基质沉积(纤连蛋白和胶原蛋白)、转化生长因子(TGF-β)下游信号标志物,特别是 Smad-2/3、基质金属蛋白酶(MMP2/9)、纤溶酶原激活物抑制剂-1(PAI-1)、上皮间质转化(EMT)和 JAK/STAT-3 通路在近端肾小管芯片模型和 UUO 模型中的表达。这些发现表明,与传统的体外 2D 培养和替代动物模型相比,近端肾小管芯片模型是研究和鉴定纤维化潜在生物标志物的更具生理相关性的模型。总之,高通量近端肾小管芯片系统显示出改善的类似于体内的功能,并表明其在肾脏纤维化药物筛选方面具有潜在的应用价值。此外,重新利用的鲁比前列酮通过抑制 TGFβ/Smad、JAK/STAT 和上皮间质转化(EMT)等 3 个主要的致纤维化信号通路,以及恢复肾功能,显示出治疗 TIF 的有效潜力。