Suppr超能文献

钴基全赫斯勒合金中磁性对热电性能的大幅提升

Large Improvement of Thermoelectric Performance by Magnetism in Co-Based Full-Heusler Alloys.

作者信息

Gui Zhigang, Wang Guiwen, Wang Honghui, Zhang Yuqing, Li Yanjun, Wen Xikai, Li Yikang, Peng Kunling, Zhou Xiaoyuan, Ying Jianjun, Chen Xianhui

机构信息

CAS Key Laboratory of Strongly coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.

Analytical and Testing Center, Chongqing University, Chongqing, 401331, P. R. China.

出版信息

Adv Sci (Weinh). 2023 Oct;10(28):e2303967. doi: 10.1002/advs.202303967. Epub 2023 Aug 4.

Abstract

Full-Heusler alloys (fHAs) exhibit high mechanical strength with earth-abundant elements, but their metallic properties tend to display small electron diffusion thermopower, limiting potential applications as excellent thermoelectric (TE) materials. Here, it is demonstrated that the Co-based fHAs Co XAl (X = Ti, V, Nb) exhibit relatively high thermoelectric performance due to spin and charge coupling. Thermopower contributions from different magnetic mechanisms, including spin fluctuation and magnon drag are extracted. A significant contribution to thermopower from magnetism compared to that from electron diffusion is demonstrated. In Co TiAl, the contribution to thermopower from spin fluctuation is higher than that from electron diffusion, resulting in an increment of 280 µW m  K in the power factor value. Interestingly, the thermopower contribution from magnon drag can reach up to -47 µV K , which is over 2400% larger than the electron diffusion thermopower. The power factor of Co TiAl can reach 4000 µW m  K which is comparable to that of conventional semiconducting TE materials. Moreover, the corresponding figure of merit zT can reach ≈0.1 at room temperature, which is significantly larger than that of traditional metallic materials. The work shows a promising unconventional way to create and optimize TE materials by introducing magnetism.

摘要

全赫斯勒合金(fHAs)由储量丰富的元素构成,具备较高的机械强度,但其金属特性往往表现为较小的电子扩散热功率,这限制了其作为优异热电(TE)材料的潜在应用。在此,研究表明基于钴的fHAs合金Co XAl(X = Ti、V、Nb)由于自旋和电荷耦合而展现出相对较高的热电性能。提取了包括自旋涨落和磁振子拖拽在内的不同磁机制对热功率的贡献。结果表明,与电子扩散相比,磁性对热功率有显著贡献。在Co TiAl中,自旋涨落对热功率的贡献高于电子扩散,使得功率因子值增加了280 μW m⁻¹ K⁻²。有趣的是,磁振子拖拽对热功率的贡献可达 -47 μV K⁻¹,比电子扩散热功率大2400%以上。Co TiAl的功率因子可达4000 μW m⁻¹ K⁻²,与传统半导体TE材料相当。此外,其对应的品质因子zT在室温下可达到≈0.1,明显高于传统金属材料。这项工作展示了一种通过引入磁性来制备和优化TE材料的颇具前景的非常规方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dc7/10558654/8b0f3e4c2a43/ADVS-10-2303967-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验