Sun Peijie, Kumar K Ramesh, Lyu Meng, Wang Zhen, Xiang Junsen, Zhang Wenqing
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Innovation (Camb). 2021 Mar 26;2(2):100101. doi: 10.1016/j.xinn.2021.100101. eCollection 2021 May 28.
How magnetism affects the Seebeck effect is an important issue of wide concern in the thermoelectric community but remains elusive. Based on a thermodynamic analysis of spin degrees of freedom on varied -electron-based ferromagnets and antiferromagnets, we demonstrate that in itinerant or partially itinerant magnetic compounds there exists a generic spin contribution to the Seebeck effect over an extended temperature range from slightly below to well above the magnetic transition temperature. This contribution is interpreted as resulting from transport spin entropy of (partially) delocalized conducting electrons with strong thermal spin fluctuations, even semiquantitatively in a single-band case, in addition to the conventional diffusion part arising from their kinetic degrees of freedom. As a highly generic effect, the spin-dependent Seebeck effect might pave a feasible way toward efficient "magnetic thermoelectrics."
磁性如何影响塞贝克效应是热电领域广泛关注的一个重要问题,但仍然难以捉摸。基于对各种电子基铁磁体和反铁磁体自旋自由度的热力学分析,我们证明,在巡游或部分巡游磁性化合物中,从略低于到远高于磁转变温度的扩展温度范围内,塞贝克效应存在一般的自旋贡献。这种贡献被解释为除了由(部分)离域传导电子的动力学自由度产生的传统扩散部分外,还源于具有强烈热自旋涨落的(部分)离域传导电子的输运自旋熵,甚至在单带情况下也能进行半定量解释。作为一种高度普遍的效应,自旋相关的塞贝克效应可能为高效的“磁热电学”铺平一条可行的道路。