Suppr超能文献

使用常规收集的医疗保健数据对养老院居民进行药物减量研究:概念框架。

Deprescribing research in nursing home residents using routinely collected healthcare data: a conceptual framework.

机构信息

Center for Health Equity Research and Promotion, Veterans Affairs (VA) Pittsburgh Healthcare System, Pittsburgh, PA, USA.

Division of Pharmaceutical Outcomes and Policy, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, NC, USA.

出版信息

BMC Geriatr. 2023 Aug 4;23(1):469. doi: 10.1186/s12877-023-04194-5.

Abstract

BACKGROUND

Efforts are needed to strengthen evidence and guidance for appropriate deprescribing for older nursing home (NH) residents, who are disproportionately affected by polypharmacy and inappropriate prescribing. Given the challenges of conducting randomized drug withdrawal studies in this population, data from observational studies of routinely collected healthcare data can be used to identify patients who are apparent candidates for deprescribing and evaluate subsequent health outcomes. To improve the design and interpretation of observational studies examining determinants, risks, and benefits of deprescribing specific medications in older NH residents, we sought to propose a conceptual framework of the determinants of deprescribing in older NH residents.

METHODS

We conducted a scoping review of observational studies examining patterns and potential determinants of discontinuing or de-intensifying (i.e., reducing) medications for NH residents. We searched PubMed through September 2021 and included studies meeting the following criteria: conducted among adults aged 65 + in the NH setting; (2) observational study designs; (3) discontinuation or de-intensification as the primary outcome with key determinants as independent variables. We conceptualized deprescribing as a behavior through a social-ecological lens, potentially influenced by factors at the intrapersonal, interpersonal, organizational, community, and policy levels.

RESULTS

Our search in PubMed identified 250 potentially relevant studies published through September 2021. A total of 14 studies were identified for inclusion and were subsequently synthesized to identify and group determinants of deprescribing into domains spanning the five core social-ecological levels. Our resulting framework acknowledges that deprescribing is strongly influenced by intrapersonal, patient-level clinical factors that modify the expected benefits and risks of deprescribing, including index condition attributes (e.g., disease severity), attributes of the medication being considered for deprescribing, co-prescribed medications, and prognostic factors. It also incorporates the hierarchical influences of interpersonal differences relating to healthcare providers and family caregivers, NH facility and health system organizational structures, community trends and norms, and finally healthcare policies.

CONCLUSIONS

Our proposed framework will serve as a useful tool for future studies seeking to use routinely collected healthcare data sources and observational study designs to evaluate determinants, risks, and benefits of deprescribing for older NH residents.

摘要

背景

需要努力加强证据和指导,以实现对老年疗养院(NH)居民的适当减药,这些居民受到多药治疗和不适当处方的不成比例的影响。鉴于在这一人群中进行随机药物撤药研究的挑战,可使用常规收集的医疗保健数据的观察性研究数据来确定明显适合减药的患者,并评估随后的健康结果。为了改进观察性研究的设计和解释,这些研究检查了老年 NH 居民中特定药物减药的决定因素、风险和益处,我们试图提出一个老年 NH 居民减药决定因素的概念框架。

方法

我们对考察 NH 居民停止或减少(即减少)药物的模式和潜在决定因素的观察性研究进行了范围界定审查。我们通过 PubMed 进行了搜索,截止到 2021 年 9 月,纳入符合以下标准的研究:在 NH 环境中对 65 岁及以上的成年人进行;(2)观察性研究设计;(3)主要结局为停药或减药,关键决定因素为自变量。我们从社会生态学的角度将减药视为一种行为,这种行为可能受到个人、人际、组织、社区和政策层面因素的影响。

结果

我们在 PubMed 中的搜索确定了 2021 年 9 月之前发表的 250 项潜在相关研究。确定了 14 项研究进行纳入,并对其进行综合分析,以确定并将减药的决定因素分为跨越五个核心社会生态层次的领域。我们的框架框架承认,减药受到个人、患者层面的临床因素的强烈影响,这些因素改变了减药的预期益处和风险,包括指标疾病属性(例如,疾病严重程度)、考虑减药的药物属性、同时开的药物和预后因素。它还纳入了与医疗保健提供者和家庭护理人员、NH 设施和医疗系统组织结构、社区趋势和规范以及最终医疗保健政策有关的人际差异的层次影响。

结论

我们提出的框架将成为未来研究的有用工具,这些研究旨在使用常规收集的医疗保健数据源和观察性研究设计来评估老年 NH 居民减药的决定因素、风险和益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0286/10401751/85b0e9b01a27/12877_2023_4194_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验