Suppr超能文献

配体结合的氯霉素乙酰转移酶二元复合物的气相稳定性和热力学揭示了负协同性。

Gas-phase stability and thermodynamics of ligand-bound, binary complexes of chloramphenicol acetyltransferase reveal negative cooperativity.

机构信息

Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA.

出版信息

Anal Bioanal Chem. 2023 Oct;415(25):6201-6212. doi: 10.1007/s00216-023-04891-5. Epub 2023 Aug 5.

Abstract

The biological role of the bacterial chloramphenicol (Chl)-resistance enzyme, chloramphenicol acetyltransferase (CAT), has seen renewed interest due to the resurgent use of Chl against multi-drug-resistant microbes. This looming threat calls for more rationally designed antibiotic derivatives that have improved antimicrobial properties and reduced toxicity in humans. Herein, we utilize native ion mobility spectrometry-mass spectrometry (IMS-MS) to investigate the gas-phase structure and thermodynamic stability of the type I variant of CAT from Escherichia coli (EcCAT) and several EcCAT:ligand-bound complexes. EcCAT readily binds multiple Chl without incurring significant changes to its gas-phase structure or stability. A non-hydrolyzable acetyl-CoA derivative (S-ethyl-CoA, S-Et-CoA) was used to kinetically trap EcCAT and Chl in a ternary, ligand-bound state (EcCAT:S-Et-CoA:Chl). Using collision-induced unfolding (CIU)-IMS-MS, we find that Chl dissociates from EcCAT:S-Et-CoA:Chl complexes at low collision energies, while S-Et-CoA remains bound to EcCAT even as protein unfolding occurs. Gas-phase binding constants further suggest that EcCAT binds S-Et-CoA more tightly than Chl. Both ligands exhibit negative cooperativity of subsequent ligand binding in their respective binary complexes. While we observe no significant change in structure or stability to EcCAT when bound to either or both ligands, we have elucidated novel gas-phase unfolding and dissociation behavior and provided a foundation for further characterization of alternative substrates and/or inhibitors of EcCAT.

摘要

由于氯霉素(Chl)对抗多药耐药微生物的重新使用,细菌氯霉素(Chl)抗性酶,氯霉素乙酰转移酶(CAT)的生物学作用重新引起了人们的兴趣。这种迫在眉睫的威胁要求设计出具有改进的抗菌特性和降低人体毒性的更合理的抗生素衍生物。在此,我们利用天然离子淌度质谱(IMS-MS)研究了大肠杆菌(EcCAT)的 I 型 CAT 变体及其几种 EcCAT:配体结合复合物的气相结构和热力学稳定性。EcCAT 很容易结合多种 Chl,而其气相结构或稳定性几乎没有变化。使用不可水解的乙酰辅酶 A 衍生物(S-乙基-CoA,S-Et-CoA),我们可以将 EcCAT 和 Chl 以动力学方式捕获在三元配体结合状态(EcCAT:S-Et-CoA:Chl)中。通过碰撞诱导解折叠(CIU)-IMS-MS,我们发现 Chl 从 EcCAT:S-Et-CoA:Chl 复合物在低碰撞能下解离,而 S-Et-CoA 甚至在蛋白质展开时仍与 EcCAT 结合。气相结合常数进一步表明 EcCAT 与 S-Et-CoA 的结合比 Chl 更紧密。两种配体在各自的二元复合物中都表现出随后配体结合的负协同性。尽管我们观察到 EcCAT 与任一或两种配体结合时,其结构或稳定性均无明显变化,但我们已经阐明了新型气相展开和解离行为,并为 EcCAT 的替代底物和/或抑制剂的进一步表征提供了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验