Suppr超能文献

肺腺癌亚型的标准化分类和通过深度学习改进分级评估。

Standardized Classification of Lung Adenocarcinoma Subtypes and Improvement of Grading Assessment Through Deep Learning.

机构信息

Department of Pathology Informatics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.

Systems Research & Development Center, Technology Bureau, NS Solutions Corp., Yokohama, Japan.

出版信息

Am J Pathol. 2023 Dec;193(12):2066-2079. doi: 10.1016/j.ajpath.2023.07.002. Epub 2023 Aug 5.

Abstract

The histopathologic distinction of lung adenocarcinoma (LADC) subtypes is subject to high interobserver variability, which can compromise the optimal assessment of patient prognosis. Therefore, this study developed convolutional neural networks capable of distinguishing LADC subtypes and predicting disease-specific survival, according to the recently established LADC tumor grades. Consensus LADC histopathologic images were obtained from 17 expert pulmonary pathologists and one pathologist in training. Two deep learning models (AI-1 and AI-2) were trained to predict eight different LADC classes. Furthermore, the trained models were tested on an independent cohort of 133 patients. The models achieved high precision, recall, and F1 scores exceeding 0.90 for most of the LADC classes. Clear stratification of the three LADC grades was reached in predicting the disease-specific survival by the two models, with both Kaplan-Meier curves showing significance (P = 0.0017 and 0.0003). Moreover, both trained models showed high stability in the segmentation of each pair of predicted grades with low variation in the hazard ratio across 200 bootstrapped samples. These findings indicate that the trained convolutional neural networks improve the diagnostic accuracy of the pathologist and refine LADC grade assessment. Thus, the trained models are promising tools that may assist in the routine evaluation of LADC subtypes and grades in clinical practice.

摘要

肺腺癌 (LADC) 亚型的组织病理学鉴别存在观察者间高度变异性,这可能会影响对患者预后的最佳评估。因此,本研究开发了能够区分 LADC 亚型并根据最近建立的 LADC 肿瘤分级预测疾病特异性生存率的卷积神经网络。从 17 位肺部病理专家和一位培训中的病理学家那里获得了共识 LADC 组织病理学图像。训练了两个深度学习模型(AI-1 和 AI-2)来预测 8 种不同的 LADC 类别。此外,还在 133 名独立患者的队列中测试了经过训练的模型。这些模型对大多数 LADC 类别的精度、召回率和 F1 评分均超过 0.90,达到了较高的精度。两个模型在预测疾病特异性生存率时都能清楚地区分三个 LADC 等级,两条 Kaplan-Meier 曲线均具有统计学意义(P=0.0017 和 0.0003)。此外,两个经过训练的模型在对每一对预测等级的分割中均表现出高度稳定性,200 个 bootstrap 样本的风险比变化较小。这些发现表明,经过训练的卷积神经网络提高了病理学家的诊断准确性,并改善了 LADC 分级评估。因此,经过训练的模型是很有前途的工具,可能有助于在临床实践中对 LADC 亚型和分级进行常规评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验