Wang Yuan, Lami Kris, Ahmad Waleed, Schallenberg Simon, Bychkov Andrey, Ye Yuanzi, Jonigk Danny, Zhu Xiaoya, Campelos Sofia, Schultheis Anne, Heldwein Matthias, Quaas Alexander, Ryska Ales, Moreira Andre L, Fukuoka Junya, Büttner Reinhard, Tolkach Yuri
Institute of Pathology University Hospital Cologne Cologne Germany.
Department of Pathology Informatics Nagasaki University Nagasaki Japan.
MedComm (2020). 2025 Sep 8;6(9):e70380. doi: 10.1002/mco2.70380. eCollection 2025 Sep.
The morphological patterns of lung adenocarcinoma (LUAD) are recognized for their prognostic significance, with ongoing debate regarding the optimal grading strategy. This study aimed to develop a clinical-grade, fully quantitative, and automated tool for pattern classification/quantification (PATQUANT), to evaluate existing grading strategies, and determine the optimal grading system. PATQUANT was trained on a high-quality dataset, manually annotated by expert pathologists. Several independent test datasets and 13 expert pathologists were involved in validation. Five large, multinational cohorts of resectable LUAD (patient = 1120) were analyzed concerning prognostic value. PATQUANT demonstrated excellent pattern segmentation/classification accuracy and outperformed 8 out of 13 pathologists. The prognostic study revealed a distinct prognostic profile for the complex glandular pattern. While all contemporary grading systems had prognostic value, the predominant pattern-based and simplified IASLC systems were superior. We propose and validate two new, fully explainable grading principles, providing fine-grained, statistically independent patient risk stratification. We developed a fully automated, robust AI tool for pattern analysis/quantification that surpasses the performance of experienced pathologists. Additionally, we demonstrate the excellent prognostic capabilities of two new grading approaches that outperform traditional grading methods. We make our extensive agreement dataset publicly available to advance the developments in the field.
肺腺癌(LUAD)的形态学模式因其预后意义而受到认可,关于最佳分级策略的争论仍在继续。本研究旨在开发一种临床级、完全定量且自动化的模式分类/量化工具(PATQUANT),以评估现有的分级策略,并确定最佳分级系统。PATQUANT在一个由专家病理学家手动注释的高质量数据集上进行训练。几个独立的测试数据集和13名专家病理学家参与了验证。对五个大型跨国可切除LUAD队列(患者 = 1120)进行了预后价值分析。PATQUANT展示了出色的模式分割/分类准确性,超过了13名病理学家中的8名。预后研究揭示了复杂腺泡模式独特的预后特征。虽然所有当代分级系统都具有预后价值,但主要基于模式的简化国际肺癌研究协会(IASLC)系统更为优越。我们提出并验证了两种全新的、完全可解释的分级原则,提供了细粒度、统计上独立的患者风险分层。我们开发了一种用于模式分析/量化的完全自动化、强大的人工智能工具,其性能超过了经验丰富的病理学家。此外,我们展示了两种新分级方法出色的预后能力,其优于传统分级方法。我们将我们广泛的一致性数据集公开,以推动该领域的发展。