Suppr超能文献

信息过多即无信息:机器学习与特征选择如何助力理解指向动作的运动控制。

Too much information is no information: how machine learning and feature selection could help in understanding the motor control of pointing.

作者信息

Thomas Elizabeth, Ali Ferid Ben, Tolambiya Arvind, Chambellant Florian, Gaveau Jérémie

机构信息

INSERMU1093, UFR STAPS, Université de Bourgogne Franche Comté, Dijon, France.

School of Engineering and Computer Science, University of Hertfordshire, Hatfield, United Kingdom.

出版信息

Front Big Data. 2023 Jul 20;6:921355. doi: 10.3389/fdata.2023.921355. eCollection 2023.

Abstract

The aim of this study was to develop the use of Machine Learning techniques as a means of multivariate analysis in studies of motor control. These studies generate a huge amount of data, the analysis of which continues to be largely univariate. We propose the use of machine learning classification and feature selection as a means of uncovering feature that are altered between conditions. High dimensional electromyogram (EMG) vectors were generated as several arm and trunk muscles were recorded while subjects pointed at various angles above and below the gravity neutral horizontal plane. We used Linear Discriminant Analysis (LDA) to carry out binary classifications between the EMG vectors for pointing at a particular angle, vs. pointing at the gravity neutral direction. Classification success provided a composite index of muscular adjustments for various task constraints-in this case, pointing angles. In order to find the combination of features that were significantly altered between task conditions, we conducted a post classification feature selection i.e., investigated which combination of features had allowed for the classification. Feature selection was done by comparing the representations of each category created by LDA for the classification. In other words computing the difference between the representations of each class. We propose that this approach will help with comparing high dimensional EMG patterns in two ways; (i) quantifying the effects of the entire pattern rather than using single arbitrarily defined variables and (ii) identifying the parts of the patterns that convey the most information regarding the investigated effects.

摘要

本研究的目的是开发机器学习技术,将其作为运动控制研究中的一种多变量分析方法。这些研究产生了大量数据,而对这些数据的分析在很大程度上仍然是单变量的。我们建议使用机器学习分类和特征选择来揭示不同条件下变化的特征。当受试者在重力中性水平面上下以不同角度进行指向动作时,记录其多个手臂和躯干肌肉的活动,从而生成高维肌电图(EMG)向量。我们使用线性判别分析(LDA)对指向特定角度与指向重力中性方向时的EMG向量进行二元分类。分类成功率为各种任务约束(在这种情况下为指向角度)下的肌肉调整提供了一个综合指标。为了找到在任务条件之间有显著变化的特征组合,我们进行了分类后特征选择,即研究哪些特征组合能够实现分类。特征选择是通过比较LDA为分类创建的每个类别的表示来完成的。换句话说,就是计算每个类别的表示之间的差异。我们认为这种方法将有助于从两个方面比较高维EMG模式:(i)量化整个模式的效果,而不是使用单个任意定义的变量;(ii)识别模式中传达有关所研究效果的最多信息的部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20d3/10399757/8c3d04eb36ee/fdata-06-921355-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验