Suppr超能文献

虚拟现实中双手活动期间基于相位和紧张性肌电信号的手部姿势分类的机器学习

Machine learning for hand pose classification from phasic and tonic EMG signals during bimanual activities in virtual reality.

作者信息

Simar Cédric, Colot Martin, Cebolla Ana-Maria, Petieau Mathieu, Cheron Guy, Bontempi Gianluca

机构信息

Machine Learning Group, Computer Science Department, Université Libre de Bruxelles, Brussels, Belgium.

Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium.

出版信息

Front Neurosci. 2024 Apr 26;18:1329411. doi: 10.3389/fnins.2024.1329411. eCollection 2024.

Abstract

Myoelectric prostheses have recently shown significant promise for restoring hand function in individuals with upper limb loss or deficiencies, driven by advances in machine learning and increasingly accessible bioelectrical signal acquisition devices. Here, we first introduce and validate a novel experimental paradigm using a virtual reality headset equipped with hand-tracking capabilities to facilitate the recordings of synchronized EMG signals and hand pose estimation. Using both the phasic and tonic EMG components of data acquired through the proposed paradigm, we compare hand gesture classification pipelines based on standard signal processing features, convolutional neural networks, and covariance matrices with Riemannian geometry computed from raw or xDAWN-filtered EMG signals. We demonstrate the performance of the latter for gesture classification using EMG signals. We further hypothesize that introducing physiological knowledge in machine learning models will enhance their performances, leading to better myoelectric prosthesis control. We demonstrate the potential of this approach by using the neurophysiological integration of the "move command" to better separate the phasic and tonic components of the EMG signals, significantly improving the performance of sustained posture recognition. These results pave the way for the development of new cutting-edge machine learning techniques, likely refined by neurophysiology, that will further improve the decoding of real-time natural gestures and, ultimately, the control of myoelectric prostheses.

摘要

在机器学习的进步以及生物电信号采集设备日益普及的推动下,肌电假肢最近在恢复上肢缺失或有缺陷个体的手部功能方面展现出了巨大的潜力。在此,我们首先介绍并验证一种新颖的实验范式,该范式使用配备手部跟踪功能的虚拟现实头戴设备,以方便同步记录肌电信号和手部姿态估计。利用通过所提出的范式采集的数据的相位和紧张性肌电成分,我们比较了基于标准信号处理特征、卷积神经网络以及从原始或经xDAWN滤波的肌电信号计算得到的带有黎曼几何的协方差矩阵的手势分类管道。我们展示了后者利用肌电信号进行手势分类的性能。我们进一步假设,在机器学习模型中引入生理知识将提高其性能,从而实现更好的肌电假肢控制。我们通过使用“移动指令”的神经生理整合来更好地分离肌电信号的相位和紧张性成分,显著提高持续姿势识别的性能,证明了这种方法的潜力。这些结果为新的前沿机器学习技术的发展铺平了道路,这些技术可能会通过神经生理学得到完善,从而进一步改善对实时自然手势的解码,并最终实现对肌电假肢的控制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e11/11082314/85b896ac8d92/fnins-18-1329411-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验