Suppr超能文献

揭示每个人肌肉激活特征的独特之处。

Revealing the unique features of each individual's muscle activation signatures.

机构信息

Laboratory 'Movement, Interactions, Performance' (EA 4334), University of Nantes, Nantes, France.

Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Rhineland-Palatinate, Germany.

出版信息

J R Soc Interface. 2021 Jan;18(174):20200770. doi: 10.1098/rsif.2020.0770. Epub 2021 Jan 13.

Abstract

There is growing evidence that each individual has unique movement patterns, or signatures. The exact origin of these movement signatures, however, remains unknown. We developed an approach that can identify individual muscle activation signatures during two locomotor tasks (walking and pedalling). A linear support vector machine was used to classify 78 participants based on their electromyographic (EMG) patterns measured on eight lower limb muscles. To provide insight into decision-making by the machine learning classification model, a layer-wise relevance propagation (LRP) approach was implemented. This enabled the model predictions to be decomposed into relevance scores for each individual input value. In other words, it provided information regarding which features of the time-varying EMG profiles were unique to each individual. Through extensive testing, we have shown that the LRP results, and by extent the activation signatures, are highly consistent between conditions and across days. In addition, they are minimally influenced by the dataset used to train the model. Additionally, we proposed a method for visualizing each individual's muscle activation signature, which has several potential clinical and scientific applications. This is the first study to provide conclusive evidence of the existence of individual muscle activation signatures.

摘要

越来越多的证据表明,每个人都有独特的运动模式或特征。然而,这些运动特征的确切起源尚不清楚。我们开发了一种方法,可以在两种运动任务(行走和踩踏)中识别个体肌肉激活特征。使用线性支持向量机根据 78 名参与者在 8 个下肢肌肉上测量的肌电图 (EMG) 模式对其进行分类。为了深入了解机器学习分类模型的决策过程,我们实施了逐层相关性传播 (LRP) 方法。这使得模型预测可以分解为每个输入值的相关性得分。换句话说,它提供了有关每个个体的时变 EMG 曲线特征中哪些是独特的信息。通过广泛的测试,我们已经表明,LRP 结果,以及激活特征,在条件和天数之间具有高度的一致性。此外,它们受用于训练模型的数据集中的影响最小。此外,我们提出了一种可视化每个个体肌肉激活特征的方法,该方法具有几个潜在的临床和科学应用。这是第一项提供确凿证据证明个体肌肉激活特征存在的研究。

相似文献

1
Revealing the unique features of each individual's muscle activation signatures.揭示每个人肌肉激活特征的独特之处。
J R Soc Interface. 2021 Jan;18(174):20200770. doi: 10.1098/rsif.2020.0770. Epub 2021 Jan 13.
2
Consistency of muscle activation signatures across different walking speeds.肌肉激活特征在不同行走速度下的一致性。
Gait Posture. 2024 Jan;107:155-161. doi: 10.1016/j.gaitpost.2023.09.001. Epub 2023 Sep 6.

引用本文的文献

本文引用的文献

4
Signing up to motor signatures: a unique link to action.与运动特征签约:通往行动的独特纽带。
J Appl Physiol (1985). 2019 Oct 1;127(4):1163-1164. doi: 10.1152/japplphysiol.00643.2019. Epub 2019 Sep 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验